Order-6 pentagonal tiling

From Wikipedia, the free encyclopedia
Order-6 pentagonal tiling
Order-6 pentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 56
Schläfli symbol {5,6}
Wythoff symbol 6 | 5 2
Coxeter diagram CDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node 1.png
Symmetry group [6,5], (*652)
Dual Order-5 hexagonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-6 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,6}.

Uniform coloring[]

This regular tiling can also be constructed from [(5,5,3)] symmetry alternating two colors of pentagons, represented by t1(5,5,3).

H2 tiling 355-2.png

Symmetry[]

This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain, and 5 mirrors meeting at a point. This symmetry by orbifold notation is called *33333 with 5 order-3 mirror intersections.

Related polyhedra and tiling[]

This tiling is topologically related as a part of sequence of regular tilings with order-6 vertices with Schläfli symbol {n,6}, and Coxeter diagram CDel node 1.pngCDel n.pngCDel node.pngCDel 6.pngCDel node.png, progressing to infinity.

Regular tilings {n,6}
Spherical Euclidean Hyperbolic tilings
Spherical hexagonal hosohedron.png
{2,6}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 63-t2.svg
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 246-4.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 256-4.png
{5,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 266-4.png
{6,6}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 267-1.png

CDel node 1.pngCDel 7.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 268-1.png
{8,6}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.png
... H2 tiling 26i-1.png
{∞,6}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 6.pngCDel node.png
Uniform hexagonal/pentagonal tilings
Symmetry: [6,5], (*652) [6,5]+, (652) [6,5+], (5*3) [1+,6,5], (*553)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 5.pngCDel node h.png CDel node.pngCDel 6.pngCDel node h.pngCDel 5.pngCDel node h.png CDel node h.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 256-1.png H2 tiling 256-3.png H2 tiling 256-2.png H2 tiling 256-6.png H2 tiling 256-4.png H2 tiling 256-5.png H2 tiling 256-7.png Uniform tiling 65-snub.png H2 tiling 355-1.png
{6,5} t{6,5} r{6,5} 2t{6,5}=t{5,6} 2r{6,5}={5,6} rr{6,5} tr{6,5} sr{6,5} s{5,6}
Uniform duals
CDel node f1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 5.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 5.pngCDel node f1.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 5.pngCDel node fh.png CDel node.pngCDel 6.pngCDel node fh.pngCDel 5.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
H2chess 256b.png Order-6 pentakis pentagonal tiling.png Order-6-5 quasiregular rhombic tiling.png H2chess 256e.png H2 tiling 256-1.png Deltoidal pentahexagonal tiling.png H2checkers 256.png
V65 V5.12.12 V5.6.5.6 V6.10.10 V56 V4.5.4.6 V4.10.12 V3.3.5.3.6 V3.3.3.5.3.5 V(3.5)5

References[]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also[]

External links[]

Retrieved from ""