Order-4-5 square honeycomb

From Wikipedia, the free encyclopedia
Order-4-5 square honeycomb
Type Regular honeycomb
Schläfli symbols {4,4,5}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
Cells {4,4} Uniform tiling 44-t0.png
Faces {4}
Edge figure {5}
Vertex figure {4,5} H2-5-4-primal.svg
Dual {5,4,4}
Coxeter group [4,4,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-5 square honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,4,5}. It has five square tiling {4,4} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many square tiling existing around each vertex in an order-5 square tiling vertex arrangement.

Images[]

Hyperbolic honeycomb 4-4-5 poincare.png
Poincaré disk model
H3 445 UHS plane at infinity.png
Ideal surface

Related polytopes and honeycombs[]

It a part of a sequence of regular polychora and honeycombs with square tiling cells: {4,4,p}

{4,4,p} honeycombs
Space E3 H3
Form Affine Paracompact Noncompact
Name {4,4,2} {4,4,3} {4,4,4} {4,4,5} {4,4,6} ...{4,4,∞}
Coxeter
CDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel p.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel p.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel p.pngCDel node h0.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.png
CDel nodes 11.pngCDel iaib.pngCDel nodes.pngCDel 2.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-55.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-66.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 3a3b-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel branch.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-ii.pngCDel node.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel iaib-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel branch.pngCDel labelinfin.png
Image H3 443 FC boundary.png H3 444 FC boundary.png Hyperbolic honeycomb 4-4-5 poincare.png Hyperbolic honeycomb 4-4-6 poincare.png Hyperbolic honeycomb 4-4-i poincare.png
Vertex
figure
Tetragonal dihedron.png
{4,2}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Square tiling uniform coloring 1.png
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H2-5-4-primal.svg
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 246-4.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
H2 tiling 24i-4.png
{4,∞}
CDel node 1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png

Order-4-6 square honeycomb[]

Order-4-6 square honeycomb
Type Regular honeycomb
Schläfli symbols {4,4,6}
{4,(4,3,4)}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node h0.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel branch.png
Cells {4,4} Uniform tiling 44-t0.png
Faces {4}
Edge figure {6}
Vertex figure {4,6} H2 tiling 246-4.png
{(4,3,4)} Uniform tiling 443-t1.png
Dual {6,4,4}
Coxeter group [4,4,6]
[4,((4,3,4))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-6 square honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,4,6}. It has six square tiling, {4,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many square tiling existing around each vertex in an order-6 square tiling vertex arrangement.

Hyperbolic honeycomb 4-4-6 poincare.png
Poincaré disk model
H3 446 UHS plane at infinity.png
Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {4,(4,3,4)}, Coxeter diagram, CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel branch.png, with alternating types or colors of square tiling cells. In Coxeter notation the half symmetry is [4,4,6,1+] = [4,((4,3,4))].

Order-4-infinite square honeycomb[]

Order-4-infinite square honeycomb
Type Regular honeycomb
Schläfli symbols {4,4,∞}
{4,(4,∞,4)}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node h0.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel branch.pngCDel labelinfin.png
Cells {4,4} Uniform tiling 44-t0.png
Faces {4}
Edge figure {∞}
Vertex figure {4,∞} H2 tiling 24i-4.png
{(4,∞,4)} H2 tiling 44i-4.png
Dual {∞,4,4}
Coxeter group [∞,4,3]
[4,((4,∞,4))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-infinite square honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,4,∞}. It has infinitely many square tiling, {4,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many square tiling existing around each vertex in an infinite-order square tiling vertex arrangement.

Hyperbolic honeycomb 4-4-i poincare.png
Poincaré disk model
H3 44i UHS plane at infinity.png
Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {4,(4,∞,4)}, Coxeter diagram, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node h0.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel branch.pngCDel labelinfin.png, with alternating types or colors of square tiling cells. In Coxeter notation the half symmetry is [4,4,∞,1+] = [4,((4,∞,4))].

See also[]

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes

References[]

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links[]

Retrieved from ""