Order-4-4 pentagonal honeycomb

From Wikipedia, the free encyclopedia
Order-4-4 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,4,4}
{5,41,1}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1-44.pngCDel nodes.png
Cells {5,4} H2-5-4-dual.svg
Faces {5}
Vertex figure {4,4}
Dual {4,4,5}
Coxeter group [5,4,4]
[5,41,1]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-4 pentagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

Geometry[]

The Schläfli symbol of the order-4-4 pentagonal honeycomb is {5,4,4}, with four order-4 pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.

Hyperbolic honeycomb 5-4-4 poincare.png
Poincaré disk model
H3 544 UHS plane at infinity.png
Ideal surface

Related polytopes and honeycombs[]

It is a part of a series of regular polytopes and honeycombs with {p,4,4} Schläfli symbol, and square tiling vertex figures:

{p,4,4} honeycombs
Space E3 H3
Form Affine Paracompact Noncompact
Name {2,4,4} {3,4,4} {4,4,4} {5,4,4} {6,4,4} ..{∞,4,4}
Coxeter
CDel node 1.pngCDel p.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel p.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel p.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel 2.pngCDel nodes.pngCDel iaib.pngCDel nodes.png
CDel node 1.pngCDel 2.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-55.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
 
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-66.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-ii.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel iaib-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
Image Order-4 square hosohedral honeycomb-sphere.png H3 344 CC center.png H3 444 FC boundary.png Hyperbolic honeycomb 5-4-4 poincare.png Hyperbolic honeycomb 6-4-4 poincare.png Hyperbolic honeycomb i-4-4 poincare.png
Cells Spherical square hosohedron2.png
{2,4}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Square tiling uniform coloring 1.png
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H2-5-4-dual.svg
{5,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 246-1.png
{6,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 24i-1.png
{∞,4}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png

Order-4-4 hexagonal honeycomb[]

Order-4-4 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbol {6,4,4}
{6,41,1}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1-44.pngCDel nodes.png
Cells {6,4} Uniform tiling 64-t0.png
Faces {6}
Vertex figure {4,4}
Dual {4,4,6}
Coxeter group [6,4,4]
[6,41,1]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-4 hexagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the octagonal tiling honeycomb is {6,4,4}, with three octagonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.

Hyperbolic honeycomb 6-4-4 poincare.png
Poincaré disk model
H3 644 UHS plane at infinity.png
Ideal surface

Order-4-4 apeirogonal honeycomb[]

Order-4-4 apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbol {∞,4,4}
{∞,41,1}
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1-44.pngCDel nodes.png
Cells {∞,4} H2 tiling 24i-1.png
Faces {∞}
Vertex figure {4,4}
Dual {4,4,∞}
Coxeter group [∞,4,4]
[∞,41,1]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-4 apeirogonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-4 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,4,4}, with three order-4 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is a square tiling, {4,4}.

Hyperbolic honeycomb i-4-4 poincare.png
Poincaré disk model
H3 i44 UHS plane at infinity.png
Ideal surface

See also[]

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes

References[]

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links[]

Retrieved from ""