Order-4 square hosohedral honeycomb

From Wikipedia, the free encyclopedia
Order-4 square hosohedral honeycomb
Order-4 square hosohedral honeycomb-sphere.png
Centrally projected onto a sphere
Type Degenerate regular honeycomb
Schläfli symbol {2,4,4}
Coxeter diagrams CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
Cells {2,4} Spherical square hosohedron2.png
Faces {2}
Edge figure {4}
Vertex figure {4,4}
Square tiling uniform coloring 1.png
Dual
Coxeter group [2,4,4]
Properties Regular

In geometry, the order-4 square hosohedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {2,4,4}. It has 4 square hosohedra {2,4} around each edge. In other words, it is a packing of infinitely tall square columns. It is a degenerate honeycomb in Euclidean space, but can be seen as a projection onto the sphere. Its vertex figure, a square tiling is seen on each hemisphere.

Images[]

Stereographic projections of spherical projection, with all edges being projected into circles.

Order-4 square hosohedral honeycomb-stereographic.png
Centered on pole
Order-4 square hosohedral honeycomb-stereographic2.png
Centered on equator

Related honeycombs[]

It is a part of a sequence of honeycombs with a square tiling vertex figure:

{p,4,4} honeycombs
Space E3 H3
Form Affine Paracompact Noncompact
Name {2,4,4} {3,4,4} {4,4,4} {5,4,4} {6,4,4} ..{∞,4,4}
Coxeter
CDel node 1.pngCDel p.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel p.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel p.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel 2.pngCDel nodes.pngCDel iaib.pngCDel nodes.png
CDel node 1.pngCDel 2.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-55.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
 
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-66.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-ii.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel iaib-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
Image Order-4 square hosohedral honeycomb-sphere.png H3 344 CC center.png H3 444 FC boundary.png Hyperbolic honeycomb 5-4-4 poincare.png Hyperbolic honeycomb 6-4-4 poincare.png Hyperbolic honeycomb i-4-4 poincare.png
Cells Spherical square hosohedron2.png
{2,4}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Square tiling uniform coloring 1.png
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H2-5-4-dual.svg
{5,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 246-1.png
{6,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 24i-1.png
{∞,4}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png

Truncated order-4 square hosohedral honeycomb[]

Order-2 square tiling honeycomb
Truncated order-4 square hosohedral honeycomb
Cubic semicheck.png
Partial tessellation with alternately colored cubes
Type uniform convex honeycomb
Schläfli symbol {4,4}×{}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Cells {3,4} Hexahedron.png
Faces {4}
Vertex figure Square pyramid
Dual
Coxeter group [2,4,4]
Properties Uniform

The {2,4,4} honeycomb can be truncated as t{2,4,4} or {}×{4,4}, Coxeter diagram CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png, seen as a layer of cubes, partially shown here with alternately colored cubic cells. Thorold Gosset identified this semiregular infinite honeycomb as a cubic semicheck.

The alternation of this honeycomb, CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png, consists of infinite square pyramids and infinite tetrahedrons, between 2 square tilings.

See also[]

References[]

  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space)
Retrieved from ""