Order-7 tetrahedral honeycomb

From Wikipedia, the free encyclopedia
Order-7 tetrahedral honeycomb
Type Hyperbolic regular honeycomb
Schläfli symbols {3,3,7}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
Cells {3,3} Uniform polyhedron-33-t0.png
Faces {3}
Edge figure {7}
Vertex figure {3,7} Order-7 triangular tiling.svg
Dual {7,3,3}
Coxeter group [7,3,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,7}. It has seven tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an order-7 triangular tiling vertex arrangement.

Images[]

Hyperbolic honeycomb 3-3-7 poincare cc.png
Poincaré disk model (cell-centered)
H3 337 UHS plane at infinity.png
Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

Related polytopes and honeycombs[]

It is a part of a sequence of regular polychora and honeycombs with tetrahedral cells, {3,3,p}.

{3,3,p} polytopes
Space S3 H3
Form Finite Paracompact Noncompact
Name {3,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
{3,3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{3,3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png
{3,3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
{3,3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
... {3,3,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
Image Stereographic polytope 5cell.png Stereographic polytope 16cell.png Stereographic polytope 600cell.png H3 336 CC center.png Hyperbolic honeycomb 3-3-7 poincare cc.png Hyperbolic honeycomb 3-3-8 poincare cc.png Hyperbolic honeycomb 3-3-i poincare cc.png
Vertex
figure
5-cell verf.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
16-cell verf.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.png
600-cell verf.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.svg
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.png
Order-7 triangular tiling.svg
{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
H2-8-3-primal.svg
{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel label4.png
H2 tiling 23i-4.png
{3,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png

It is a part of a sequence of hyperbolic honeycombs with order-7 triangular tiling vertex figures, {p,3,7}.

{3,3,7} {4,3,7} {5,3,7} {6,3,7} {7,3,7}
Hyperbolic honeycomb 3-3-7 poincare cc.png Hyperbolic honeycomb 4-3-7 poincare cc.png Hyperbolic honeycomb 5-3-7 poincare cc.png Hyperbolic honeycomb 6-3-7 poincare.png Hyperbolic honeycomb 7-3-7 poincare.png Hyperbolic honeycomb 8-3-7 poincare.png Hyperbolic honeycomb i-3-7 poincare.png

It is a part of a sequence of hyperbolic honeycombs, {3,p,7}.

Order-8 tetrahedral honeycomb[]

Order-8 tetrahedral honeycomb
Type Hyperbolic regular honeycomb
Schläfli symbols {3,3,8}
{3,(3,4,3)}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
Cells {3,3} Uniform polyhedron-33-t0.png
Faces {3}
Edge figure {8}
Vertex figure {3,8} H2-8-3-primal.svg
{(3,4,3)} Uniform tiling 433-t2.png
Dual {8,3,3}
Coxeter group [3,3,8]
[3,((3,4,3))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,8}. It has eight tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an order-8 triangular tiling vertex arrangement.

Hyperbolic honeycomb 3-3-8 poincare cc.png
Poincaré disk model (cell-centered)
H3 338 UHS plane at infinity.png
Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(3,4,3)}, Coxeter diagram, CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png, with alternating types or colors of tetrahedral cells. In Coxeter notation the half symmetry is [3,3,8,1+] = [3,((3,4,3))].

Infinite-order tetrahedral honeycomb[]

Infinite-order tetrahedral honeycomb
Type Hyperbolic regular honeycomb
Schläfli symbols {3,3,∞}
{3,(3,∞,3)}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
Cells {3,3} Uniform polyhedron-33-t0.png
Faces {3}
Edge figure {∞}
Vertex figure {3,∞} H2 tiling 23i-4.png
{(3,∞,3)} H2 tiling 33i-4.png
Dual {∞,3,3}
Coxeter group [∞,3,3]
[3,((3,∞,3))]
Properties Regular

In the geometry of hyperbolic 3-space, the infinite-order tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,∞}. It has infinitely many tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an infinite-order triangular tiling vertex arrangement.

Hyperbolic honeycomb 3-3-i poincare cc.png
Poincaré disk model (cell-centered)
H3 33i UHS plane at infinity.png
Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(3,∞,3)}, Coxeter diagram, CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node h0.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png, with alternating types or colors of tetrahedral cells. In Coxeter notation the half symmetry is [3,3,∞,1+] = [3,((3,∞,3))].

See also[]

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes

References[]

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links[]

Retrieved from ""