Order-5-4 square honeycomb

From Wikipedia, the free encyclopedia
Order-4-5 square honeycomb
Type Regular honeycomb
Schläfli symbol {4,5,4}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
Cells {4,5} H2-5-4-primal.svg
Faces {4}
Edge figure {4}
Vertex figure {5,4}
Dual self-dual
Coxeter group [4,5,4]
Properties Regular

In the geometry of hyperbolic 3-space, the order-5-4 square honeycomb (or 4,5,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,5,4}.

Geometry[]

All vertices are ultra-ideal (existing beyond the ideal boundary) with four order-5 square tilings existing around each edge and with an order-4 pentagonal tiling vertex figure.

Hyperbolic honeycomb 4-5-4 poincare.png
Poincaré disk model
H3 454 UHS plane at infinity.png
Ideal surface

Related polytopes and honeycombs[]

It a part of a sequence of regular polychora and honeycombs {p,5,p}:

{p,5,p} regular honeycombs
Space H3
Form Paracompact Noncompact
Name {3,5,3} {4,5,4} {5,5,5} {6,5,6} {7,5,7} ...{∞,5,∞}
Image H3 353 CC center.png Hyperbolic honeycomb 4-5-4 poincare.png Hyperbolic honeycomb 5-5-5 poincare.png Hyperbolic honeycomb 6-5-6 poincare.png Hyperbolic honeycomb i-5-i poincare.png
Cells
{p,5}
Icosahedron.png
{3,5}
H2-5-4-primal.svg
{4,5}
H2 tiling 255-1.png
{5,5}
H2 tiling 256-1.png
{6,5}
H2 tiling 257-1.png
H2 tiling 258-1.png
H2 tiling 25i-1.png
{∞,5}
Vertex
figure
{5,p}
Uniform polyhedron-53-t0.svg
{5,3}
H2-5-4-dual.svg
{5,4}
H2 tiling 255-4.png
{5,5}
H2 tiling 256-4.png
{5,6}
H2 tiling 257-4.png
{5,7}
H2 tiling 258-4.png
{5,8}
H2 tiling 25i-4.png
{5,∞}

Order-5-5 pentagonal honeycomb[]

Order-5-5 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,5,5}
Coxeter diagrams CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
Cells {5,5} H2 tiling 255-1.png
Faces {5}
Edge figure {5}
Vertex figure {5,5}
Dual self-dual
Coxeter group [5,5,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-5-5 pentagonal honeycomb (or 5,5,5 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,5,5}.

All vertices are ultra-ideal (existing beyond the ideal boundary) with five order-5 pentagonal tilings existing around each edge and with an order-5 pentagonal tiling vertex figure.

Hyperbolic honeycomb 5-5-5 poincare.png
Poincaré disk model
H3 555 UHS plane at infinity.png
Ideal surface

Order-5-6 hexagonal honeycomb[]

Order-5-6 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbols {6,5,6}
{6,(5,3,5)}
Coxeter diagrams CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node h0.png = CDel node 1.pngCDel 6.pngCDel node.pngCDel split1-55.pngCDel branch.png
Cells {6,5} H2 tiling 256-1.png
Faces {6}
Edge figure {6}
Vertex figure {5,6} H2 tiling 256-4.png
{(5,3,5)} H2 tiling 355-1.png
Dual self-dual
Coxeter group [6,5,6]
[6,((5,3,5))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-5-6 hexagonal honeycomb (or 6,5,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,5,6}. It has six order-5 hexagonal tilings, {6,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an order-6 pentagonal tiling vertex arrangement.

Hyperbolic honeycomb 6-5-6 poincare.png
Poincaré disk model
H3 656 UHS plane at infinity.png
Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {6,(5,3,5)}, Coxeter diagram, CDel node 1.pngCDel 6.pngCDel node.pngCDel split1-55.pngCDel branch.png, with alternating types or colors of cells. In Coxeter notation the half symmetry is [6,5,6,1+] = [6,((5,3,5))].

Order-5-7 heptagonal honeycomb[]

Order-5-7 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbols {7,5,7}
Coxeter diagrams CDel node 1.pngCDel 7.pngCDel node.pngCDel 5.pngCDel node.pngCDel 7.pngCDel node.png
Cells H2 tiling 257-1.png
Faces {6}
Edge figure {6}
Vertex figure H2 tiling 257-4.png
Dual self-dual
Coxeter group [7,5,7]
Properties Regular

In the geometry of hyperbolic 3-space, the order-5-7 heptagonal honeycomb (or 7,5,7 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {7,5,7}. It has seven , {7,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many heptagonal tilings existing around each vertex in an vertex arrangement.

H3 757 UHS plane at infinity.png
Ideal surface

Order-5-infinite apeirogonal honeycomb[]

Order-5-infinite apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbols {∞,5,∞}
{∞,(5,∞,5)}
Coxeter diagrams CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.pngCDel infin.pngCDel node h0.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel split1-55.pngCDel branch.pngCDel labelinfin.png
Cells {∞,5} H2 tiling 25i-1.png
Faces {∞}
Edge figure {∞}
Vertex figure H2 tiling 25i-4.png {5,∞}
H2 tiling 55i-4.png {(5,∞,5)}
Dual self-dual
Coxeter group [∞,5,∞]
[∞,((5,∞,5))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-5-infinite apeirogonal honeycomb (or ∞,5,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {∞,5,∞}. It has infinitely many order-5 apeirogonal tilings {∞,5} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-5 apeirogonal tilings existing around each vertex in an infinite-order pentagonal tiling vertex arrangement.

Hyperbolic honeycomb i-5-i poincare.png
Poincaré disk model
H3 i5i UHS plane at infinity.png
Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {∞,(5,∞,5)}, Coxeter diagram, CDel node 1.pngCDel infin.pngCDel node.pngCDel split1-55.pngCDel branch.pngCDel labelinfin.png, with alternating types or colors of cells.

See also[]

  • Convex uniform honeycombs in hyperbolic space
  • List of regular polytopes
  • Infinite-order dodecahedral honeycomb

References[]

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

External links[]

Retrieved from ""