Oxazole

From Wikipedia, the free encyclopedia
Oxazole
Full structural formula
Skeletal formula with numbers
Ball-and-stick model
Space-filling model
Names
Preferred IUPAC name
1,3-Oxazole[1]
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.005.474 Edit this at Wikidata
EC Number
  • 206-020-8
MeSH D010080
UNII
  • InChI=1S/C3H3NO/c1-2-5-3-4-1/h1-3H ☒N
    Key: ZCQWOFVYLHDMMC-UHFFFAOYSA-N ☒N
  • InChI=1/C3H3NO/c1-2-5-3-4-1/h1-3H
    Key: ZCQWOFVYLHDMMC-UHFFFAOYAD
  • C1=COC=N1
Properties
C3H3NO
Molar mass 69.06 g/mol
Density 1.050 g/cm3
Boiling point 69 to 70 °C (156 to 158 °F; 342 to 343 K)
Acidity (pKa) 0.8 (of conjugate acid) [2]
Supplementary data page
Structure and
properties
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
Spectral data
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  (what is checkY☒N ?)
Infobox references

Oxazole is the parent compound for a vast class of heterocyclic aromatic organic compounds. These are azoles with an oxygen and a nitrogen separated by one carbon.[3] Oxazoles are aromatic compounds but less so than the thiazoles. Oxazole is a weak base; its conjugate acid has a pKa of 0.8, compared to 7 for imidazole.

Preparation[]

Classical oxazole synthetic methods in organic chemistry are

Other methods:

oxazoline from propargyl amides Merkul 2006
Oxazoline Synthesis Continuous Reactor

Biosynthesis[]

In biomolecules, oxazoles result from the cyclization and oxidation of serine or threonine nonribosomal peptides:

Where X = H, CH
3
for serine and threonine respectively, B = base.
(1) Enzymatic cyclization. (2) Elimination. (3) [O] = enzymatic oxidation.

Oxazoles are not as abundant in biomolecules as the related thiazoles with oxygen replaced by a sulfur atom.

Reactions[]

With a pKa of 0.8 for the conjugate acid, oxazoles are far less basic than imidazoles (pKa = 7).[7]

Oxazoline CAN oxidation
In the balanced half-reaction three equivalents of water are consumed for each equivalent of oxazoline, generating 4 protons and 4 electrons (the latter derived from CeIV).
Use of an oxazole in the synthesis of a precursor to pyridoxine, which is converted to vitamin B6.[9]

See also[]

  • Isoxazole, an analog with the nitrogen atom in position 2.
  • Imidazole, an analog with the oxygen replaced by a nitrogen.
  • Thiazole, an analog with the oxygen replaced by a sulfur.
  • Benzoxazole, where the oxazole is fused to another aromatic ring.
  • Pyrrole, an analog without the oxygen atom.
  • Furan, an analog without the nitrogen atom.
  • Oxazoline, which has one double bond reduced.
  • Oxazolidine, which has both double bonds reduced.
  • Oxadiazoles with two nitrogens instead of one (e.g. furazan).
  • Oxazolone, an analog with a carbonyl group

References[]

  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 140. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. ^ Zoltewicz, J. A. & Deady, L. W. Quaternization of heteroaromatic compounds. Quantitative aspects. Adv. Heterocycl. Chem. 22, 71-121 (1978).
  3. ^ Heterocyclic Chemistry TL Gilchrist, The Bath press 1985 ISBN 0-582-01421-2
  4. ^ A new consecutive three-component oxazole synthesis by an amidation–coupling–cycloisomerization (ACCI) sequence Eugen Merkul and Thomas J. J. Müller Chem. Commun., 2006, 4817 - 4819, doi:10.1039/b610839c
  5. ^ Fully Automated Continuous Flow Synthesis of 4,5-Disubstituted Oxazoles Marcus Baumann, Ian R. Baxendale, Steven V. Ley, Christoper D. Smith, and Geoffrey K. Tranmer Org. Lett.; 2006; 8(23) pp 5231 - 5234; (Letter) doi:10.1021/ol061975c
  6. ^ They react together in the first phase in a continuous flow reactor to the intermediate enol and then in the second phase in a phosphazene base (PS-BEMP) induced cyclization by solid-phase synthesis.
  7. ^ Thomas L. Gilchrist "Heterocyclic Chemistry" 3rd ed. Addison Wesley: Essex, England, 1997. 414 pp. ISBN 0-582-27843-0.
  8. ^ "Ceric Ammonium Nitrate Promoted Oxidation of Oxazoles", David A. Evans, Pavel Nagorny, and Risheng Xu. Org. Lett.; 2006; 8(24) pp 5669 - 5671; (Letter) doi:10.1021/ol0624530
  9. ^ Gérard Moine, Hans-Peter Hohmann, Roland Kurth, Joachim Paust, Wolfgang Hähnlein, Horst Pauling, Bernd–Jürgen Weimann, Bruno Kaesler (2011). "Vitamins, 6. B Vitamins". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.o27_o09.CS1 maint: uses authors parameter (link)
Retrieved from ""