Seoul orthohantavirus

From Wikipedia, the free encyclopedia
Seoul orthohantavirus
Virus classification e
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Negarnaviricota
Class: Ellioviricetes
Order: Bunyavirales
Family: Hantaviridae
Genus: Orthohantavirus
Species:
Seoul orthohantavirus
Strains

Seoul orthohantavirus (SEOV) is a member of the Orthohantavirus family of rodent-borne viruses and is one of the 4 hantaviruses that are known to be able to cause Hantavirus hemorrhagic fever with renal syndrome (HFRS).[1][2] It is an Old World hantavirus; a negative sense, single-stranded, tri-segmented RNA virus.

Seoul virus is found in Rattus species rats, most commonly Rattus norvegicus, but occasionally Rattus rattus.[3] Rats do not show physiological symptoms when carrying the virus, but humans can be infected through exposure to infected rodent body fluids (blood, saliva, urine), exposure to aerosolized rat excrement, or bites from infected rats.[1] When rodent bedding or urine is stirred up by either natural causes or human-caused disturbances, small particles are made to be airborne. This can be breathed in and cause an infection in humans. There is currently no evidence of human-to-human transmission of SEOV, only rodent-human transmission.[4]

Seoul virus was first described by Dr. Lee Ho-Wang (Ho-Wang Lee), a Korean virologist. As the infection was first found in an apartment in Seoul, the virus was named "Seoul Virus".[citation needed]

Virology[]

Virus structure and genome[]

SEOV, along with all other hantaviruses, is a negative sense, single-stranded RNA virus. Its genome has three different segments: S (small), M (medium), and L (large).[5] The virus is pleomorphic, having various shapes, but often is seen as spherical, with its two surface glycoproteins arranged in rows. Inside this sphere, the three RNA segments are arranged as circles, coated in the virus' N (nucleocapsid) protein and attached to the L protein. The 5' and 3' ends of the genome segments match up, creating a panhandle structure. This base pairing occurs in all hantavirus species, with the panhandle structure and sequence being unique to each particular species, of course with some similarities and overlap between species, including an eight nucleotide consensus sequence.[6][5]

Viral proteins[]

There are four major viral proteins, the two surface glycoproteins (Gn and Gc), the nucleocapsid protein (N), and the viral polymerase (L).

The Gn and Gc proteins exist on the surface of the mature virus as spikes in highly ordered rows, with each spike having four Gn/Gc heterodimers.[5][7] Interactions between the spikes are thought to cause viral budding into the Golgi apparatus.[8] These surface glycoproteins are also responsible for the attachment of the virus to its target host cell. Gn and Gc spikes attach to β3 integrins and co-receptors on the target cell surface.[7][9]

Transmission[]

Rodent Populations[]

Human Populations[]

There are no instances of SEOV transmission from human to human.

Epidemiology[]

Most human infections are recorded in Asia.[4] Human infections account for ~25% of cases of hemorrhagic fever with renal syndrome in Asia.[10]

R. norvegicus rodents are found in urban areas worldwide, meaning that SEOV and HFRS are also found globally in human populations in urban areas.[3] As of 2015 the virus has been found in wild rats in the Netherlands, and in both rodents and humans in England, Wales, France, Belgium, and Sweden.[1] Rats in New York City are also known reservoirs.[11]

An outbreak of Seoul virus infected eleven people in the U.S. states of Illinois, Indiana and Wisconsin from December 2016 to February 2017. Individuals who operated a home-based rat-breeding facility in Wisconsin became ill and were hospitalized. The ill individuals had purchased rats from animal suppliers in Wisconsin and Illinois. Investigators traced the infection to two Illinois ratteries and identified six additional people who tested positive for Seoul virus. All these individuals recovered. Further investigation by the Centers for Disease Control and Prevention revealed that potentially infected rodents may have traveled to the states of Alabama, Arkansas, Colorado, Illinois, Indiana, Iowa, Louisiana, Michigan, Minnesota, Missouri, North Dakota, South Carolina, Tennessee, Utah, and Wisconsin.[12][4] Cases were also reported in Ontario in February 2016.[13]

Clinical features[]

In humans, Seoul virus causes hemorrhagic fever with renal syndrome (HFRS), along with other Old World hantaviruses. Although New World hantaviruses typically cause hantavirus pulmonary syndrome (HPS), either disease can involve the patient's kidneys or lungs.[14][15]

The patient will develop high grade fever, sweating, chills, abdominal pain, joint pain, red eye, nausea, vomiting, one or multiple rash(es) and/or a headache.

The incubation period varies from 1-8 weeks. The symptoms can appear quickly, the majority of patients developing symptoms 1-2 weeks from the time of infection. The patient will suffer from severe symptoms which may lead to death. To prevent contracting this virus, avoid contact with wild rats and only adopt pet rats from trusted sources who have tested their rats by serology in order to confirm their colony does not carry this virus. Proof of testing should be public and offered to anyone who asks for it.[citation needed]

SEOV in Rodents[]

Seoul virus is known to be found primarily in Rattus norvegicus (Norway Rat), but has also been seen in Rattus rattus (Black Rat) populations.[3] Traditionally, it has been thought that each virus in the hantavirus genus is highly specific to a single rodent host species,[16][17] but this idea is being challenged.[18][19]

Rattus species rodents do not show symptoms of infection with SEOV.[20]

See also[]

References[]

  1. ^ Jump up to: a b c Goeijenbier M; et al. (May 2015). "Seoul hantavirus in brown rats in the Netherlands: implications for physicians—Epidemiology, clinical aspects, treatment and diagnostics". Neth. J. Med. 73 (4): 155–60. PMID 25968286.
  2. ^ US Centers for Disease Control. Virology, Hantaviruses Page last reviewed: August 29, 2012.
  3. ^ Jump up to: a b c Jonsson, Colleen B.; Figueiredo, Luiz Tadeu Moraes; Vapalahti, Olli (2010-04-01). "A Global Perspective on Hantavirus Ecology, Epidemiology, and Disease". Clinical Microbiology Reviews. 23 (2): 412–441. doi:10.1128/CMR.00062-09. ISSN 0893-8512. PMC 2863364. PMID 20375360.
  4. ^ Jump up to: a b c US Centers for Disease Control. Multi-state Outbreak of Seoul Virus Updated January 19, 2017.
  5. ^ Jump up to: a b c Knipe, David M. (2015). Fields Virology. Wolters Kluwer. ISBN 978-1-4511-0563-6. OCLC 956639500.
  6. ^ Mir, M. A.; Brown, B.; Hjelle, B.; Duran, W. A.; Panganiban, A. T. (2006-11-01). "Hantavirus N Protein Exhibits Genus-Specific Recognition of the Viral RNA Panhandle". Journal of Virology. 80 (22): 11283–11292. doi:10.1128/JVI.00820-06. ISSN 0022-538X. PMC 1642145. PMID 16971445.
  7. ^ Jump up to: a b Cifuentes-Muñoz, Nicolás; Salazar-Quiroz, Natalia; Tischler, Nicole (2014-04-21). "Hantavirus Gn and Gc Envelope Glycoproteins: Key Structural Units for Virus Cell Entry and Virus Assembly". Viruses. 6 (4): 1801–1822. doi:10.3390/v6041801. ISSN 1999-4915. PMC 4014721. PMID 24755564.
  8. ^ Acuna, R.; Cifuentes-Munoz, N.; Marquez, C. L.; Bulling, M.; Klingstrom, J.; Mancini, R.; Lozach, P.-Y.; Tischler, N. D. (2013-12-11). "Hantavirus Gn and Gc Glycoproteins Self-Assemble into Virus-Like Particles". Journal of Virology. 88 (4): 2344–2348. doi:10.1128/jvi.03118-13. ISSN 0022-538X. PMC 3911568. PMID 24335294.
  9. ^ Krautkramer, E.; Zeier, M. (2008-02-27). "Hantavirus Causing Hemorrhagic Fever with Renal Syndrome Enters from the Apical Surface and Requires Decay-Accelerating Factor (DAF/CD55)". Journal of Virology. 82 (9): 4257–4264. doi:10.1128/jvi.02210-07. ISSN 0022-538X. PMC 2293039. PMID 18305044.
  10. ^ Yao LS, Qin CF, Pu Y, Zhang XL, Liu YX, Liu Y, Cao XM, Deng YQ, Wang J, Hu KX, Xu BL (2012). "Complete genome sequence of Seoul virus isolated from Rattus norvegicus in the Democratic People's Republic of Korea". J. Virol. 86 (24): 13853. doi:10.1128/JVI.02668-12. PMC 3503101. PMID 23166256.
  11. ^ Firth, C (2014). "Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City". mBio. 5 (5): e01933–14. doi:10.1128/mBio.01933-14. PMC 4205793. PMID 25316698.
  12. ^ "Multi-state Outbreak of Seoul Virus | Hantavirus | DHCPP | CDC". www.cdc.gov. Retrieved 2017-02-14.
  13. ^ "3 people in Ontario contract Seoul virus spread by rats". CBC News. The Canadian Press. 1 March 2017. Retrieved 4 March 2017.
  14. ^ Clement, Jan; Maes, Piet; Van Ranst, Marc (2014-07-17). "Hemorrhagic Fever with Renal Syndrome in the New, and Hantavirus Pulmonary Syndrome in the old world: Paradi(se)gm lost or regained?". Virus Research. Hantaviruses. 187: 55–58. doi:10.1016/j.virusres.2013.12.036. ISSN 0168-1702. PMID 24440318.
  15. ^ Krüger, Detlev H.; Schönrich, Günther; Klempa, Boris (2011-06-01). "Human pathogenic hantaviruses and prevention of infection". Human Vaccines. 7 (6): 685–693. doi:10.4161/hv.7.6.15197. ISSN 1554-8600. PMC 3219076. PMID 21508676.
  16. ^ Mills, James N. (February 2006). "Biodiversity loss and emerging infectious disease: An example from the rodent-borne hemorrhagic fevers". Biodiversity. 7 (1): 9–17. doi:10.1080/14888386.2006.9712789. ISSN 1488-8386.
  17. ^ Plyusnin, A.; Morzunov, S. P. (2001), Schmaljohn, Connie S.; Nichol, Stuart T. (eds.), "Virus Evolution and Genetic Diversity of Hantaviruses and Their Rodent Hosts", Hantaviruses, Current Topics in Microbiology and Immunology, Springer, 256, pp. 47–75, doi:10.1007/978-3-642-56753-7_4, ISBN 978-3-642-56753-7, PMID 11217406
  18. ^ Chin, Chuan; Chiueh, Tzong-Shi; Yang, Wen-Chin; Yang, Tzong-Horng; Shih, Chwen-Ming; Lin, Hui-Tsu; Lin, Kih-Ching; Lien, Jih-Ching; Tsai, Theodore F.; Ruo, Suyu L.; Nichol, Stuart T. (2000). "Hantavirus infection in Taiwan: The experience of a geographically unique area". Journal of Medical Virology. 60 (2): 237–247. doi:10.1002/(SICI)1096-9071(200002)60:2<237::AID-JMV21>3.0.CO;2-B. ISSN 1096-9071. PMID 10596027.
  19. ^ Reusken, Chantal; Heyman, Paul (2013-02-01). "Factors driving hantavirus emergence in Europe". Current Opinion in Virology. Virus entry / Environmental virology. 3 (1): 92–99. doi:10.1016/j.coviro.2013.01.002. ISSN 1879-6257. PMID 23384818.
  20. ^ Kariwa, H.; Fujiki, M.; Yoshimatsu, K.; Arikawa, J.; Takashima, I.; Hashimoto, N. (February 1998). "Urine-associated horizontal transmission of Seoul virus among rats". Archives of Virology. 143 (2): 365–374. doi:10.1007/s007050050292. ISSN 0304-8608. PMID 9541619.
Retrieved from ""