Snub dodecahedral prism

From Wikipedia, the free encyclopedia
Snub dodecahedral prism
Snub dodecahedral prism.png
Schlegel diagram
Type Prismatic uniform polychoron
Uniform index 64
Schläfli symbol sr{3,5}×{}
Coxeter-Dynkin CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 2.pngCDel node 1.png
Cells 94 total:
2 Snub dodecahedron ccw.png 3.3.3.3.5

80 Triangular prism.png 3.4.4
12 Pentagonal prism.png 4.4.5

Faces 334 total:
160 {3}
150 {4}
24 {5}
Edges 360
Vertices 120
Vertex figure Snub dodecahedral prism verf.png
irr. pentagonal pyramid
Symmetry group [(5,3)+,2], order 120
Properties convex

In geometry, a snub dodecahedral prism or snub icosidodecahedral prism is a convex uniform polychoron (four-dimensional polytope).

It is one of 18 convex uniform polyhedral prisms created by using uniform prisms to connect pairs of Platonic solids or Archimedean solids in parallel hyperplanes, in this case a pair of snub dodecahedra.

Alternative names[]

  • Snub-icosidodecahedral dyadic prism (Norman W. Johnson)
  • Sniddip (Jonathan Bowers: for snub-dodecahedral prism)
  • Snub-icosidodecahedral hyperprism
  • Snub-dodecahedral prism
  • Snub-dodecahedral hyperprism

See also[]

  • Snub dodecahedral antiprism ht0,1,2,3{5,3,2}, or CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png - A related nonuniform polychoron

External links[]

  • 6. Convex uniform prismatic polychora - Model 64, George Olshevsky.
  • Klitzing, Richard. "4D uniform polytopes (polychora) x s3s5s - sniddip".


Retrieved from ""