Snub rhombicuboctahedron

From Wikipedia, the free encyclopedia
Snub rhombicuboctahedron
Snub rhombicuboctahedron.png
Schläfli symbol srr{4,3} =
Conway notation saC
Faces 74:
8+48 {3}
6+12 {4}
Edges 120
Vertices 48
Symmetry group O, [4,3]+, (432) order 24
Dual polyhedron
Properties convex, chiral

The snub rhombicuboctahedron is a polyhedron, constructed as a truncated rhombicuboctahedron. It has 74 faces: 18 squares, and 56 triangles. It can also be called the Conway snub cuboctahedron in but will be confused with the Coxeter snub cuboctahedron, the snub cube.

Related polyhedra[]

The snub rhombicuboctahedron can be seen in sequence of operations from the cuboctahedron.

Name Cubocta-
hedron
Truncated
cubocta-
hedron
Snub
cubocta-
hedron
Truncated
rhombi-
cubocta-
hedron
Snub
rhombi-
cubocta-
hedron
Coxeter CO (rC) tCO (trC) sCO (srC) trCO (trrC) srCO (htrrC)
Conway aC taC = bC sC taaC = baC saC
Image Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Truncated rhombicuboctahedron2.png Snub rhombicuboctahedron2.png
Conway jC mC gC maC gaC
Dual Rhombicdodecahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Disdyakis enneacontahexahedron.png Pentagonal tetracontoctahedron.png

See also[]

References[]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5

External links[]

Retrieved from ""