Rhombicuboctahedron

From Wikipedia, the free encyclopedia
Rhombicuboctahedron
Rhombicuboctahedron.jpg
(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 26, E = 48, V = 24 (χ = 2)
Faces by sides 8{3}+(6+12){4}
Conway notation eC or aaC
aaaT
Schläfli symbols rr{4,3} or
t0,2{4,3}
Wythoff symbol 3 4 | 2
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Symmetry group Oh, B3, [4,3], (*432), order 48
Rotation group O, [4,3]+, (432), order 24
Dihedral angle 3-4: 144°44′08″ (144.74°)
4-4: 135°
References U10, C22, W13
Properties Semiregular convex
Polyhedron small rhombi 6-8 max.png
Colored faces
Polyhedron small rhombi 6-8 vertfig.svg
3.4.4.4
(Vertex figure)
Polyhedron small rhombi 6-8 dual max.png
Deltoidal icositetrahedron
(dual polyhedron)
Polyhedron small rhombi 6-8 net.svg
Net

In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is an Archimedean solid with eight triangular and eighteen square faces. There are 24 identical vertices, with one triangle and three squares meeting at each one. (Note that six of the squares only share vertices with the triangles while the other twelve share an edge.) The polyhedron has octahedral symmetry, like the cube and octahedron. Its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids.

Names[]

Johannes Kepler in Harmonices Mundi (1618) named this polyhedron a rhombicuboctahedron, being short for truncated cuboctahedral rhombus, with cuboctahedral rhombus being his name for a rhombic dodecahedron.[1] There are different truncations of a rhombic dodecahedron into a topological rhombicuboctahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the rectification of the dual cuboctahedron (right), which is the core of the dual compound.

It can also be called an expanded or cantellated cube or octahedron, from truncation operations on either uniform polyhedron.

Since its inclusion in Wings 3D as an "octotoad"[2] this unofficial moniker is spreading.

Geometric relations[]

The rhombicuboctahedron can be seen as either an expanded cube (the blue faces) or an expanded octahedron (the red faces).

There are distortions of the rhombicuboctahedron that, while some of the faces are not regular polygons, are still vertex-uniform. Some of these can be made by taking a cube or octahedron and cutting off the edges, then trimming the corners, so the resulting polyhedron has six square and twelve rectangular faces. These have octahedral symmetry and form a continuous series between the cube and the octahedron, analogous to the distortions of the rhombicosidodecahedron or the tetrahedral distortions of the cuboctahedron. However, the rhombicuboctahedron also has a second set of distortions with six rectangular and sixteen trapezoidal faces, which do not have octahedral symmetry but rather Th symmetry, so they are invariant under the same rotations as the tetrahedron but different reflections.

The lines along which a Rubik's Cube can be turned are, projected onto a sphere, similar, topologically identical, to a rhombicuboctahedron's edges. In fact, variants using the Rubik's Cube mechanism have been produced which closely resemble the rhombicuboctahedron.[3][4]

The rhombicuboctahedron is used in three uniform space-filling tessellations: the cantellated cubic honeycomb, the runcitruncated cubic honeycomb, and the runcinated alternated cubic honeycomb.

Dissection[]

The rhombicuboctahedron can be dissected into two square cupolae and a central octagonal prism. A rotation of one cupola by 45 degrees creates the pseudo­rhombi­cubocta­hedron. Both of these polyhedra have the same vertex figure: 3.4.4.4.

There are three pairs of parallel planes that each intersect the rhombicuboctahedron in a regular octagon. The rhombicuboctahedron may be divided along any of these to obtain an octagonal prism with regular faces and two additional polyhedra called square cupolae, which count among the Johnson solids; it is thus an elongated square orthobicupola. These pieces can be reassembled to give a new solid called the elongated square gyrobicupola or pseudorhombicuboctahedron, with the symmetry of a square antiprism. In this the vertices are all locally the same as those of a rhombicuboctahedron, with one triangle and three squares meeting at each one, but are not all identical with respect to the entire polyhedron, since some are closer to the symmetry axis than others.

Exploded rhombicuboctahedron.png Small rhombicuboctahedron.png
Rhombicuboctahedron
Pseudorhombicuboctahedron.png
Pseudorhombicuboctahedron

Orthogonal projections[]

The rhombicuboctahedron has six special orthogonal projections, centered, on a vertex, on two types of edges, and three types of faces: triangles, and two squares. The last two correspond to the B2 and A2 Coxeter planes.

Orthogonal projections
Centered by Vertex Edge
3-4
Edge
4-4
Face
Square-1
Face
Square-2
Face
Triangle
Solid Polyhedron small rhombi 6-8 from blue max.png Polyhedron small rhombi 6-8 from red max.png Polyhedron small rhombi 6-8 from yellow max.png
Wireframe Cube t02 v.png Cube t02 e34.png Cube t02 e44.png Cube t02 f4b.png 3-cube t02 B2.svg 3-cube t02.svg
Projective
symmetry
[2] [2] [2] [2] [4] [6]
Dual Dual cube t02 v.png Dual cube t02 e34.png Dual cube t02 e44.png Dual cube t02 f4b.png Dual cube t02 B2.png Dual cube t02.png

Spherical tiling[]

The rhombicuboctahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

Uniform tiling 432-t02.png Rhombicuboctahedron stereographic projection square.png
(6) square-centered
Rhombicuboctahedron stereographic projection square2.png
(6) square-centered
Rhombicuboctahedron stereographic projection triangle.png
(8) triangle-centered
Orthogonal projection Stereographic projections

Pyritohedral symmetry[]

A half symmetry form of the rhombicuboctahedron, CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, exists with pyritohedral symmetry, [4,3+], (3*2) as Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png, Schläfli symbol s2{3,4}, and can be called a cantic snub octahedron. This form can be visualized by alternatingly coloring the edges of the 6 squares. These squares can then be distorted into rectangles, while the 8 triangles remain equilateral. The 12 diagonal square faces will become isosceles trapezoids. In the limit, the rectangles can be reduced to edges, and the trapezoids become triangles, and an icosahedron is formed, by a snub octahedron construction, CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png, s{3,4}. (The compound of two icosahedra is constructed from both alternated positions.)

Algebraic properties[]

Cartesian coordinates[]

Cartesian coordinates for the vertices of a rhombicuboctahedron centred at the origin, with edge length 2 units, are all the even permutations of

(±1, ±1, ±(1 + 2)).

If the original rhombicuboctahedron has unit edge length, its dual strombic icositetrahedron has edge lengths

Area and volume[]

The area A and the volume V of the rhombicuboctahedron of edge length a are:

Close-packing density[]

The optimal packing fraction of rhombicuboctahedra is given by

.

It was noticed that this optimal value is obtained in a Bravais lattice by de Graaf (2011). Since the rhombicuboctahedron is contained in a rhombic dodecahedron whose inscribed sphere is identical to its own inscribed sphere, the value of the optimal packing fraction is a corollary of the Kepler conjecture: it can be achieved by putting a rhombicuboctahedron in each cell of the rhombic dodecahedral honeycomb, and it cannot be surpassed, since otherwise the optimal packing density of spheres could be surpassed by putting a sphere in each rhombicuboctahedron of the hypothetical packing which surpasses it.

In the arts[]

The 1495 Portrait of Luca Pacioli, traditionally attributed to Jacopo de' Barbari, includes a glass rhombicuboctahedron half-filled with water, which may have been painted by Leonardo da Vinci.[6] The first printed version of the rhombicuboctahedron was by Leonardo and appeared in Pacioli's Divina proportione (1509).

A spherical 180° × 360° panorama can be projected onto any polyhedron; but the rhombicuboctahedron provides a good enough approximation of a sphere while being easy to build. This type of projection, called Philosphere, is possible from some panorama assembly software. It consists of two images that are printed separately and cut with scissors while leaving some flaps for assembly with glue.[7]

Objects[]

The Freescape games Driller and Dark Side both had a game map in the form of a rhombicuboctahedron.

The "Hurry-Scurry Galaxy" and "Sea Slide Galaxy" in the videogame Super Mario Galaxy have planets in the similar shape of a rhombicuboctahedron.

Sonic the Hedgehog 3's Icecap Zone features pillars topped with rhombicuboctahedra.

During the Rubik's Cube craze of the 1980s, at least two twisty puzzles sold had the form of a rhombicuboctahedron (the mechanism was similar to that of a Rubik's Cube).[3][4]

Related polyhedra[]

The rhombicuboctahedron is one of a family of uniform polyhedra related to the cube and regular octahedron.

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg

Symmetry mutations[]

This polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

*n32 symmetry mutation of expanded tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paracomp.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
Figure Spherical triangular prism.png Uniform tiling 332-t02.png Uniform tiling 432-t02.png Uniform tiling 532-t02.png Uniform polyhedron-63-t02.png Rhombitriheptagonal tiling.svg H2-8-3-cantellated.svg H2 tiling 23i-5.png
Config. 3.4.2.4 3.4.3.4 3.4.4.4 3.4.5.4 3.4.6.4 3.4.7.4 3.4.8.4 3.4.∞.4
*n42 symmetry mutation of expanded tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Compact hyperbolic Paracomp.
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*∞42
[∞,4]
Expanded
figures
Uniform tiling 432-t02.png Uniform tiling 44-t02.png H2-5-4-cantellated.svg Uniform tiling 64-t02.png Uniform tiling 74-t02.png Uniform tiling 84-t02.png H2 tiling 24i-5.png
Config. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 ∞.4.4.4
Rhombic
figures
config.
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Uniform tiling 44-t0.svg
V4.4.4.4
H2-5-4-deltoidal.svg
V5.4.4.4
Deltoidal tetrahexagonal til.png
V6.4.4.4
Deltoidal tetraheptagonal til.png
V7.4.4.4
Deltoidal tetraoctagonal til.png
V8.4.4.4
Deltoidal tetraapeirogonal tiling.png
V∞.4.4.4

Vertex arrangement[]

It shares its vertex arrangement with three nonconvex uniform polyhedra: the stellated truncated hexahedron, the small rhombihexahedron (having the triangular faces and six square faces in common), and the small cubicuboctahedron (having twelve square faces in common).

Small rhombicuboctahedron.png
Rhombicuboctahedron
Small cubicuboctahedron.png
Small cubicuboctahedron
Small rhombihexahedron.png
Small rhombihexahedron
Stellated truncated hexahedron.png
Stellated truncated hexahedron
Rhombicuboctahedral graph
Rhombicuboctahedral graph.png
4-fold symmetry
Vertices24
Edges48
Automorphisms48
PropertiesQuartic graph, Hamiltonian, regular
Table of graphs and parameters

Rhombicuboctahedral graph[]

In the mathematical field of graph theory, a rhombicuboctahedral graph is the graph of vertices and edges of the rhombicuboctahedron, one of the Archimedean solids. It has 24 vertices and 48 edges, and is a quartic graph Archimedean graph.[8]

See also[]

References[]

  1. ^ Harmonies Of The World by Johannes Kepler, Translated into English with an introduction and notes by E. J. Aiton, A. M. Duncan, J. V. Field, 1997, ISBN 0-87169-209-0 (page 119)
  2. ^ https://en.wikibooks.org/wiki/Wings_3D/User_Manual/The_Primitives_Menu
  3. ^ Jump up to: a b "Soviet Puzzle Ball". TwistyPuzzles.com. Retrieved 23 December 2015.
  4. ^ Jump up to: a b "Diamond Style Puzzler". Jaap's Puzzle Page. Retrieved 31 May 2017.
  5. ^ RitrattoPacioli.it
  6. ^ MacKinnon, Nick (1993). "The Portrait of Fra Luca Pacioli". The Mathematical Gazette. 77 (479): 143. doi:10.2307/3619717.
  7. ^ Philosphere
  8. ^ Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269

Further reading[]

External links[]

Retrieved from ""