Truncated 16-cell honeycomb

From Wikipedia, the free encyclopedia
Truncated 16-cell honeycomb
(No image)
Type Uniform honeycomb
Schläfli symbols t{3,3,4,3}
h2{4,3,3,4}
t{3,31,1,1}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png
4-face type {3,4,3} Schlegel wireframe 24-cell.png
t{3,3,4} Schlegel half-solid truncated 16-cell.png
Cell type {3,3}
t{3,3}
Face type {3}
{6}
Vertex figure cubic pyramid
Coxeter group = [3,3,4,3]
= [4,3,31,1]
= [31,1,1,1]
Dual ?
Properties vertex-transitive

In four-dimensional Euclidean geometry, the truncated 16-cell honeycomb (or cantic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by 24-cell and truncated 16-cell facets.

Alternate names[]

  • Truncated hexadecachoric tetracomb / Truncated hexadecachoric honeycomb

Related honeycombs[]

The [3,4,3,3], CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, Coxeter group generates 31 permutations of uniform tessellations, 28 are unique in this family and ten are shared in the [4,3,3,4] and [4,3,31,1] families. The alternation (13) is also repeated in other families.

F4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[3,3,4,3] CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png ×1

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png 1, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png 3, CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png 5, CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png 6, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png ,
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png 9, CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png , CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png , CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png 12

[3,4,3,3] CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png ×1

CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 2, CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 4, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 7, CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 13,
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 14, CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png 15, CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 16, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 17,
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png , CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png , CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png 20, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png ,
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 23, CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png , CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png ,
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png 26, CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png , CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png , CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

[(3,3)[3,3,4,3*]]
=[(3,3)[31,1,1,1]]
=[3,4,3,3]
CDel node c2.pngCDel split1.pngCDel nodeab c1.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
=CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png
= CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
×4

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png (2), CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png (4), CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png (7), CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png (13)

The [4,3,3,4], CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.

C4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,3,4]: CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png ×1

CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 1, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 2, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 3, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 4,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 5, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 6, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 7, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 8,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 9, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 10, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 11, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 12,
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 13

[[4,3,3,4]] CDel node c3.pngCDel split1.pngCDel nodeab c2.pngCDel 4a4b.pngCDel nodeab c1.png ×2 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png (1), CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png (2), CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png (13), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 18
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png (6), CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png 19, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png 20
[(3,3)[1+,4,3,3,4,1+]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]
CDel node c2.pngCDel split1.pngCDel nodeab c1.pngCDel 4a4b.pngCDel nodes.png
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png
CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
×6

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 14, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 15, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 16, CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png 17

The [4,3,31,1], CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

B4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,31,1]: CDel node c5.pngCDel 4.pngCDel node c4.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png ×1

CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png 5, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png 6, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png 7, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png 8

<[4,3,31,1]>:
↔[4,3,3,4]
CDel node c5.pngCDel 4.pngCDel node c4.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1.png
CDel node c5.pngCDel 4.pngCDel node c4.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.png
×2

CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png 9, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png 10, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png 11, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png 12, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png 13, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png 14,

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png (10), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png 15, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png 16, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png (13), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 17, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 18, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png 19

[3[1+,4,3,31,1]]
↔ [3[3,31,1,1]]
↔ [3,3,4,3]
CDel node c3.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.pngCDel 4a.pngCDel nodea.png
CDel node c3.pngCDel 3.pngCDel node c2.pngCDel splitsplit1.pngCDel branch3 c1.pngCDel node c1.png
CDel node c3.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
×3

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png 1, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png 2, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png 3, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png 4

[(3,3)[1+,4,3,31,1]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png
CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
×12

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png 20, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png 21, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 22, CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel nodes hh.png 23

There are ten uniform honeycombs constructed by the Coxeter group, all repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 10th is constructed as an alternation. As subgroups in Coxeter notation: [3,4,(3,3)*] (index 24), [3,3,4,3*] (index 6), [1+,4,3,3,4,1+] (index 4), [31,1,3,4,1+] (index 2) are all isomorphic to [31,1,1,1].

The ten permutations are listed with its highest extended symmetry relation:

D4 honeycombs
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
[31,1,1,1] CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png (none)
<[31,1,1,1]>
↔ [31,1,3,4]
CDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel split1.pngCDel nodeab c4.png
CDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel 3.pngCDel node c4.pngCDel 4.pngCDel node.png
×2 = (none)
<2[1,131,1]>
↔ [4,3,3,4]
CDel nodeab c1.pngCDel split2.pngCDel node c3.pngCDel split1.pngCDel nodeab c2.png
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node.png
×4 = CDel nodes 11.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png 1, CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes.png 2
[3[3,31,1,1]]
↔ [3,3,4,3]
CDel node c3.pngCDel 3.pngCDel node c2.pngCDel splitsplit1.pngCDel branch3 c1.pngCDel node c1.png
CDel node c3.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
×6 = CDel node 1.pngCDel 3.pngCDel node.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png3, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png 4, CDel node.pngCDel 3.pngCDel node.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png 5, CDel node.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png 6
[4[1,131,1]]
↔ [[4,3,3,4]]
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.png
×8 = ×2 CDel nodes.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes.png 7, CDel nodes 11.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 11.png 8, CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 9
[(3,3)[31,1,1,1]]
↔ [3,4,3,3]
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png
CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
×24 =
[(3,3)[31,1,1,1]]+
↔ [3+,4,3,3]
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png
CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
½×24 = ½ CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel split1.pngCDel nodes hh.png 10

See also[]

Regular and uniform honeycombs in 4-space:

Notes[]

References[]

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Klitzing, Richard. "4D Euclidean tesselations". (x3x3o *b3o4o), (x3x3o *b3o *b3o), x3x3o4o3o - thext - O105
Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
Retrieved from ""