Arcsine distribution
Probability density function | |||
Cumulative distribution function | |||
Parameters | none | ||
---|---|---|---|
Support | |||
CDF | |||
Mean | |||
Median | |||
Mode | |||
Variance | |||
Skewness | |||
Ex. kurtosis | |||
Entropy | |||
MGF | |||
CF |
In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function is
for 0 ≤ x ≤ 1, and whose probability density function is
on (0, 1). The standard arcsine distribution is a special case of the beta distribution with α = β = 1/2. That is, if is an arcsine-distributed random variable, then . By extension, the arcsine distribution is a special case of the Pearson type I distribution.
The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial.[1] [2]
Generalization[]
Parameters | |||
---|---|---|---|
Support | |||
CDF | |||
Mean | |||
Median | |||
Mode | |||
Variance | |||
Skewness | |||
Ex. kurtosis |
Arbitrary bounded support[]
The distribution can be expanded to include any bounded support from a ≤ x ≤ b by a simple transformation
for a ≤ x ≤ b, and whose probability density function is
on (a, b).
Shape factor[]
The generalized standard arcsine distribution on (0,1) with probability density function
is also a special case of the beta distribution with parameters .
Note that when the general arcsine distribution reduces to the standard distribution listed above.
Properties[]
- Arcsine distribution is closed under translation and scaling by a positive factor
- If
- The square of an arcsine distribution over (-1, 1) has arcsine distribution over (0, 1)
- If
Characteristic function[]
The characteristic function of the arcsine distribution is a confluent hypergeometric function and given as .
The arcsine distribution has an application to beamforming and pattern synthesis in reference: https://ieeexplore.ieee.org/abstract/document/8170756/
Related distributions[]
- If U and V are i.i.d uniform (−π,π) random variables, then , , , and all have an distribution.
- If is the generalized arcsine distribution with shape parameter supported on the finite interval [a,b] then
- If X ~ Cauchy(0, 1) then has a standard arcsine distribution
Application[]
The ArcSine distribution has an application to beamforming and pattern synthesis provided in reference https://ieeexplore.ieee.org/document/8170756 [3]
See also[]
- Arcsine
References[]
- ^ Overturf, Drew; Buchanan, Kristopher; Jensen, Jeffrey; Wheeland, Sara; Huff, Gregory (2017). "Investigation of beamforming patterns from volumetrically distributed phased arrays". MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). pp. 817–822. doi:10.1109/MILCOM.2017.8170756. ISBN 978-1-5386-0595-0. https://ieeexplore.ieee.org/abstract/document/8170756/
- ^ K. Buchanan, J. Jensen, C. Flores-Molina, S. Wheeland and G. H. Huff, "Null Beamsteering Using Distributed Arrays and Shared Aperture Distributions," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 7, pp. 5353-5364, July 2020, doi: 10.1109/TAP.2020.2978887.
- ^ Overturf, Drew; Buchanan, Kris; Jensen, Jeff; Flores-Molina, Carlos; Wheeland, Sara; Huff, Gregory H. (2017). "Investigation of beamforming patterns from volumetrically distributed phased arrays". MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). pp. 817–822. doi:10.1109/MILCOM.2017.8170756. ISBN 978-1-5386-0595-0. S2CID 11591305.
- Rogozin, B.A. (2001) [1994], "Arcsine distribution", Encyclopedia of Mathematics, EMS Press
- Continuous distributions