Barium sulfide

From Wikipedia, the free encyclopedia
Barium sulfide
NaCl polyhedra.png
Identifiers
  • 21109-95-5 checkY
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.040.180 Edit this at Wikidata
EC Number
  • 244-214-4
13627
UNII
  • InChI=1S/Ba.S/q+2;-2 checkY
    Key: CJDPJFRMHVXWPT-UHFFFAOYSA-N checkY
  • InChI=1/Ba.S/q+2;-2
    Key: CJDPJFRMHVXWPT-UHFFFAOYAO
  • [Ba+2].[S-2]
Properties
BaS
Molar mass 169.39 g/mol
Appearance white solid
Density 4.25 g/cm3 [1]
Melting point 2,235[2] °C (4,055 °F; 2,508 K)
Boiling point decomposes
2.88 g/100 mL (0 °C)
7.68 g/100 mL (20 °C)
60.3 g/100 mL (100 °C)
Solubility insoluble in alcohol
2.155
Structure
Halite (cubic), cF8
Fm3m, No. 225
Octahedral (Ba2+); octahedral (S2−)
Hazards
GHS labelling:
GHS07: Exclamation markGHS09: Environmental hazard
Signal word
Warning
H315, H319, H335, H400
P261, P264, P271, P273, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
2
3
2
Lethal dose or concentration (LD, LC):
LD50 (median dose)
226 mg/kg humans
Related compounds
Other anions
Barium oxide
Other cations
Magnesium sulfide
Calcium sulfide
Strontium sulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY  (what is checkY☒N ?)
Infobox references

Barium sulfide is the inorganic compound with the formula BaS. BaS is the barium compound produced on the largest scale.[3] It is an important precursor to other barium compounds including BaCO3 and the pigment lithopone, ZnS/BaSO4.[4] Like other chalcogenides of the alkaline earth metals, BaS is a short wavelength emitter for electronic displays.[5] It is colorless, although like many sulfides, it is commonly obtained in impure colored forms.

Discovery, production and properties[]

BaS was prepared by the Italian alchemist Vincentius (or Vincentinus) Casciarolus (or Casciorolus, 1571-1624) via the thermo-chemical reduction of BaSO4 (available as the mineral barite).[6] It is currently manufactured by an improved version of Casciarolus's process using coke in place of flour and charcoal. This kind of conversion is called a carbothermic reaction:

BaSO4 + 2 C → BaS + 2 CO2

and also:

BaSO4 + 4 C → BaS + 4 CO

The basic method remains in use today. BaS dissolves in water. These aqueous solutions, when treated with sodium carbonate or carbon dioxide, give a white solid of barium carbonate, a source material for many commercial barium compounds.[7]

According to Harvey (1957),[8] in 1603, Vincenzo Cascariolo used barite, found at the bottom of Mount Paterno near Bologna, in one of his non-fruitful attempts to produce gold. After grinding and heating the mineral with charcoal under reducing conditions, he obtained a persistent luminescent material rapidly called Lapis Boloniensis, or Bolognian stone.[9][10] The phosphorescence of the material obtained by Casciarolo made it a curiosity.[11][12][13]

BaS crystallizes with the NaCl structure, featuring octahedral Ba2+ and S2− centres.

The observed melting point of barium sulfide is highly sensitive to impurities.[2]

Safety[]

BaS is quite poisonous, as are related sulfides, such as CaS, which evolve toxic hydrogen sulfide upon contact with water.

References[]

  1. ^ Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3.
  2. ^ a b Stinn, C., Nose, K., Okabe, T. et al. Metall and Materi Trans B (2017) 48: 2922. https://doi.org/10.1007/s11663-017-1107-5
  3. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  4. ^ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  5. ^ Vij, D. R.; Singh, N. "Optical and electrical properties of II-VI wide gap semiconducting barium sulfide" Proceedings of SPIE (1992), 1523 (Conf. Phys. Technol. Semicond. Devices Integr. Circuits, 1992), 608-12.
  6. ^ F. Licetus, Litheosphorus, sive de lapide Bononiensi lucem in se conceptam ab ambiente claro mox in tenebris mire conservante, Utini, ex typ. N. Schiratti, 1640. See http://www.chem.leeds.ac.uk/delights/texts/Demonstration_21.htm Archived 2011-08-13 at the Wayback Machine
  7. ^ Kresse, Robert; Baudis, Ulrich; Jäger, Paul; Riechers, H. Hermann; Wagner, Heinz; Winkler, Jochen; Wolf, Hans Uwe (2007). "Barium and Barium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_325.pub2.
  8. ^ Harvey E. Newton (1957). A History of Luminescence: From the Earliest Times until 1900. Memoirs of the American Physical Society, Philadelphia, J. H. FURST Company, Baltimore, Maryland (USA), Vol. 44, Chapter 1, pp. 11-43.
  9. ^ Smet, Philippe F.; Moreels, Iwan; Hens, Zeger; Poelman, Dirk (2010). "Luminescence in Sulfides: A Rich History and a Bright Future". Materials. 3 (4): 2834–2883. doi:10.3390/ma3042834. ISSN 1996-1944.
  10. ^ Hardev Singh Virk (2014). "History of Luminescence from Ancient to Modern Times". ResearchGate. Retrieved 6 March 2021.
  11. ^ "Lapis Boloniensis". www.zeno.org.
  12. ^ Lemery, Nicolas (1714). Trait℗e universel des drogues simples.
  13. ^ Ozanam, Jacques; Montucla, Jean Etienne; Hutton, Charles (1814). Recreations in mathematics and natural philosophy .
Retrieved from ""