Discovery of the nonmetals

From Wikipedia, the free encyclopedia
Nonmetals in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson

Most nonmetallic elements were discovered after the freezing of mercury in 1759, by the German-Russian physicist and the Russian polymath Lomonosov. Before then, carbon, sulfur and antimony were known in antiquity; and arsenic and phosphorus were discovered in, respectively, the middle ages, and the Renaissance. In the ensuring century and a half, from 1766 to 1895, all the remaining nonmetallic elements, bar radon, astatine, and oganesson had been isolated. The latter three were discovered in 1898, 1940 and 2002.

Antiquity: C, S, (Sb)[]

Carbon, sulfur, and antimony were known in antiquity. The earliest known use of charcoal dates to around 3750 BCE. The Egyptians and Sumerians employed it for the reduction of copper, zinc, and tin ores in the manufacture of bronze. Diamonds were probably known from as early as 2500 BCE. The first true chemical analyses were made in the 18th century; Lavoisier recognized carbon as an element in 1789. Sulfur usage dates from before 2500 BCE; it was recognized as an element by Antoine Lavoisier in 1777. Antimony usage was concurrent with that of sulfur; the Louvre holds a 5,000 year old vase made of almost pure antimony.

13th century: (As)[]

Albertus Magnus (Albert the Great, 1193–1280) is believed to have been the first to isolate the element from a compound in 1250, by heating soap together with arsenic trisulfide. If so, it was the first element to be chemically discovered.

17th century: P[]

Phosphorus was prepared from urine, by Hennig Brand, in 1669.

18th century: H, O, N, (Te), Cl[]

Hydrogen: Cavendish, in 1766, was the first to distinguish hydrogen from other gases, although Paracelsus around 1500, Robert Boyle (1670), and Joseph Priestley (?) had observed its production by reacting strong acids with metals. Lavoisier named it in 1793. Oxygen: Carl Wilhelm Scheele obtained oxygen by heating mercuric oxide and nitrates in 1771, but did not publish his findings until 1777. Priestley also prepared this new "air" by 1774, but only Lavoisier recognized it as a true element; he named it in 1777. Nitrogen: Rutherford discovered nitrogen while he was studying at the University of Edinburgh. He showed that the air in which animals breathed, after removal of exhaled carbon dioxide, was no longer able to burn a candle. Scheele, Henry Cavendish, and Priestley also studied this element at about the same time; Lavoisier named it in 1775 or 1776. Tellurium: In 1783, Franz-Joseph Müller von Reichenstein, who was then serving as the Austrian chief inspector of mines in Transylvania, concluded that a new element was present in a gold ore from the mines in Zlatna, near today's city of Alba Iulia, Romania. In 1789, a Hungarian scientist, Pál Kitaibel, discovered the element independently in an ore from Deutsch-Pilsen that had been regarded as argentiferous molybdenite, but later he gave the credit to Müller. In 1798, it was named by Martin Heinrich Klaproth, who had earlier isolated it from the mineral calaverite. Chlorine: In 1774, Scheele obtained chlorine from hydrochloric acid but thought it was an oxide. Only in 1808 did Humphry Davy recognize it as an element.

Early 19th century: (B), I, Se, (Si), Br[]

Boron was identified by Sir Humphry Davy in 1808 but not isolated in a pure form until 1909, by the American chemist Ezekiel Weintraub. Iodine was discovered in 1811 by Courtois from the ashes of seaweed. Selenium: In 1817, when Berzelius and Johan Gottlieb Gahn were working with lead they discovered a substance that was similar to tellurium. After more investigation Berzelius concluded that it was a new element, related to sulfur and tellurium. Because tellurium had been named for the Earth, Berzelius named the new element "selenium", after the moon. Silicon: In 1823, Berzelius prepared amorphous silicon by reducing potassium fluorosilicate with molten potassium metal. Bromine: Balard and Gmelin both discovered bromine in the autumn of 1825 and published their results in the following year.

Late 19th century: He, F, (Ge), Ar, Kr, Ne, Xe[]

Helium: In 1868, Janssen and Lockyer independently observed a yellow line in the solar spectrum that did not match that of any other element. In 1895, in each case at around the same time, Ramsay, Cleve, and Langlet independently observed helium trapped in cleveite. Fluorine: André-Marie Ampère predicted an element analogous to chlorine obtainable from hydrofluoric acid, and between 1812 and 1886 many researchers tried to obtain it. Fluorine was eventually isolated in 1886 by Moissan. Germanium: In mid-1885, at a mine near Freiberg, Saxony, a new mineral was discovered and named argyrodite because of its silver content. The chemist Clemens Winkler analyzed this new mineral, which proved to be a combination of silver, sulfur, and a new element, germanium, which he was able to isolate in 1886. Argon: Lord Rayleigh and Ramsay discovered argon in 1894 by comparing the molecular weights of nitrogen prepared by liquefaction from air, and nitrogen prepared by chemical means. It was the first noble gas to be isolated. Krypton, neon, and xenon: In 1898, within a period of three weeks, Ramsay and Travers successively separated krypton, neon and xenon from liquid argon by exploiting differences in their boiling points.

20th century: Rn, (At)[]

In 1899, Ernest Rutherford and Robert B. Owens discovered a radioactive gas resulting from the radioactive decay of thorium; Ramsay and Robert Whytlaw-Gray subsequently isolated radon in 1910. Astatine was synthesised in 1940 by Dale R. Corson, Kenneth Ross MacKenzie, and Emilio Segrè. They bombarded bismuth-209 with alpha particles in a cyclotron to produce, after emission of two neutrons, astatine-211.

21st century: (Og)[]

Oganesson, the heavier congener of the noble gas radon, in group 18, was synthesised in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists.

See also[]

  • Nonmetal
Retrieved from ""