Ionophore

From Wikipedia, the free encyclopedia
Carrier and channel ionophores
(a) Carrier ionophores reversibly bind ions and carry them through cell membranes.
(b) Channel ionophores create channels within cell membranes to facilitate the transport of ions.

An ionophore (from Greek ion and -phore, "ion carrier") is a chemical species that reversibly binds ions.[1] Many ionophores are lipid-soluble entities that transport ions across the cell membrane. Ionophores catalyze ion transport across hydrophobic membranes, such as liquid polymeric membranes (carrier-based ion selective electrodes) or lipid bilayers found in the living cells or synthetic vesicles (liposomes).[1] Structurally, an ionophore contains a hydrophilic center and a hydrophobic portion that interacts with the membrane.

Some ionophores are synthesized by microorganisms to import ions into their cells. Synthetic ion carriers have also been prepared. Ionophores selective for cations and anions have found many applications in analysis.[2] These compounds have also shown to have various biological effects and a synergistic effect when combined with the ion they bind.[3]

Classification[]

The structure of the complex of sodium (Na+) and the antibiotic monensin A
Structure of a potassium complex of a crown ether, a synthetic ionophore-ion complex

Biological activities of metal ion-binding compounds can be changed in response to the increment of the metal concentration, and based on the latter compounds can be classified as "metal ionophores", "metal chelators" or "metal shuttles".[3] If the biological effect is augmented by increasing the metal concentration, it is classified as a "metal ionophore". If the biological effect is decreased or reversed by increasing the metal concentration, it is classified as a "metal chelator". If the biological effect is not affected by increasing the metal concentration, and the compound-metal complex enters the cell, it is classified as a "metal shuttle". The term ionophore (from Greek ion carrier or ion bearer) was proposed by Berton Pressman in 1967 when he and his colleagues were investigating the antibiotic mechanisms of valinomycin and nigericin.[4]

Many ionophores are produced naturally by a variety of microbes, fungi and plants, and act as a defense against competing or pathogenic species. Multiple synthetic membrane-spanning ionophores have also been synthesized.[5] The two broad classifications of ionophores synthesized by microorganisms are:

  • Carrier ionophores that bind to a particular ion and shield its charge from the surrounding environment. This makes it easier for the ion to pass through the hydrophobic interior of the lipid membrane.[6] However, these ionophores become unable to transport ions under very low temperatures.[7] An example of a carrier ionophore is valinomycin, a molecule that transports a single potassium cation. Carrier ionophores may be proteins or other molecules.
  • Channel formers that introduce a hydrophilic pore into the membrane, allowing ions to pass through without coming into contact with the membrane's hydrophobic interior.[8] Channel forming ionophores are usually large proteins. This type of ionophores can maintain their ability to transfer ions at low temperatures, unlike carrier ionophores.[7] Examples of channel-forming ionophores are gramicidin A and nystatin.

Ionophores that transport hydrogen ions (H+, i.e. protons) across the cell membrane are called protonophores. Iron ionophores and chelating agents are collectively called siderophores.

Synthetic ionophores[]

Many synthetic ionophores are based on crown ethers, cryptands, and calixarenes. Pyrazole-pyridine and bis-pyrazole derivatives have also been synthesized.[9] These synthetic species are often macrocyclic.[10] Some synthetic agents are not macrocyclic, e.g. carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. Even simple organic compounds, such as phenols, exhibit ionophoric properties. The majority of synthetic receptors used in the carrier-based anion-selective electrodes employ transition elements or metalloids as anion carriers, although simple organic urea- and thiourea-based receptors are known.[11]

Mechanism of action[]

Ionophores are chemical compounds that reversibly bind and transport ions through biological membranes in the absence of a protein pore. This can disrupt the membrane potential, and thus these substances could exhibit cytotoxic properties.[1] Ionophores modify the permeability of biological membranes toward certain ions to which they show affinity and selectivity. Many ionophores are lipid-soluble and transport ions across hydrophobic membranes, such as lipid bilayers found in the living cells or synthetic vesicles (liposomes), or liquid polymeric membranes (carrier-based ion selective electrodes).[1] Structurally, an ionophore contains a hydrophilic center and a hydrophobic portion that interacts with the membrane. Ions are bound to the hydrophilic center and form an ionophore-ion complex. The structure of the ionophore-ion complex has been verified by X-ray crystallography.[12]

Chemistry[]

Several chemical factors affect the ionophore activity.[13] The activity of an ionophore-metal complex depends on its geometric configuration and the coordinating sites and atoms which create coordination environment surrounding the metal center. This affects the selectivity and affinity towards a certain ion. Ionophores can be selective to a particular ion but may not be exclusive to it. Ionophores facilitate the transport of ions across biological membranes most commonly via passive transport, which is affected by lipophilicity of the ionophore molecule. The increase in lipophilicity of the ionophore-metal complex enhances its permeability through lipophilic membranes. The hydrophobicity and hydrophilicity of the complex also determines whether it will slow down or ease the transport of metal ions into cell compartments. The reduction potential of a metal complex influences its thermodynamic stability and affects its reactivity. The ability of an ionophore to transfer ions is also affected by the temperature.

Biological properties[]

Ionophores are widely used in cell physiology experiments and biotechnology as these compounds can effectively perturb gradients of ions across biological membranes and thus they can modulate or enhance the role of key ions in the cell.[14] Many ionophores have shown antibacterial and antifungal activities.[15] Some of them also act against insects, pests and parasites. Some ionophores have been introduced into medicinal products for dermatological and veterinary use.[16][17] A large amount of research has been directed toward investigating novel antiviral, anti-inflammatory, anti-tumor, antioxidant and neuroprotective properties of different ionophores.[15][18][3]

Chloroquine is an antimalarial and antiamebic drug.[19] It is also used in the management of rheumatoid arthritis and lupus erythematosus. Pyrithione is used as an anti-dandruff agent in medicated shampoos for seborrheic dermatitis.[16] It also serves as an anti-fouling agent in paints to cover and protect surfaces against mildew and algae.[20] Clioquinol and PBT2 are 8-hydroxyquinoline derivatives.[citation needed] Clioquinol has antiprotozoal and topical antifungal properties, however its use as an antiprotozoal agent has widely restricted because of neurotoxic concerns.[21] Clioquinol and PBT2 are currently being studied for neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease and Parkinson's disease. Gramicidin is used in throat lozenges and has been used to treat infected wounds.[22][23] Epigallocatechin gallate is used in many dietary supplements[24] and has shown slight cholesterol-lowering effects.[25] Quercetin has a bitter flavor and is used as a food additive and in dietary supplements.[26] Hinokitiol (ß-thujaplicin) is used in commercial products for skin, hair and oral care, insect repellents and deodorants.[27][28] It is also used as a food additive,[29] shelf-life extending agent in food packaging,[30] and wood preservative in timber treatment.[31]

Polyene antimycotics, such as nystatin, natamycin and amphotericin B, are a subgroup of macrolides and are widely used antifungal and antileishmanial medications. These drugs act as ionophores by binding to ergosterol in the fungal cell membrane and making it leaky and permeable for K+ and Na+ ions, as a result contributing to fungal cell death.[32]

Carboxylic ionophores, i.e. monensin, lasalocid, salinomycin, narasin, maduramicin, semduramycin and laidlomycin, are marketed globally and widely used as anticoccidial feed additives to prevent and treat coccidiosis in poultry.[33] Some of these compounds have also been used as growth and production promoters in certain ruminants, such as cattle, and chickens, however this use has been mainly restricted because of safety issues.[34][35]

Zinc ionophores have been shown to inhibit replication of various viruses in vitro, including coxsackievirus,[36][37] equine arteritis virus,[38] coronavirus,[38] HCV,[39] HSV,[40] HCoV-229E,[41] HIV,[42][43] mengovirus,[36][37] MERS-CoV,[41] rhinovirus,[36] SARS-CoV-1,[38][41] Zika virus.[44][45]

Ionophore Cations Sources
This is not a complete list of all known ionophores.
The metal ions listed for each ionophore are not exclusive.
Beauvericin[46] Ba2+, Ca2+ Beauveria bassiana, Fusarium species
Calcimycin[47][48] Mn2+, Ca2+, Mg2+, Sr2+, Ba2+, Zn2+, Co2+, Ni,2+, Fe2+
Chloroquine[49] Zn2+ Cinchona officinalis
Clioquinol[3] Zn2+, Cu2+, Fe2+ Synthetic ionophore
Diiodohydroxyquinoline[50] Zn2+ Synthetic ionophore
Dithiocarbamates (pyrrolidine dithiocarbamate and other derivatives)[51] Zn2+, Cu2+ Synthetic ionophore
Enniatin[52] NH4+ Fusarium species
Epigallocatechin gallate[53] Zn2+ Camellia sinensis, apples, plums, onions, hazelnuts, pecans, carobs
Gramicidin A[54] K+, Na+ Brevibacillus brevis
Hinokitiol[55] Zn2+ Cupressaceae species
Ionomycin[56] Ca2+
Laidlomycin[57] Li+, K+, Na+, Mg2+, Ca2+, Sr2+ Streptomyces species
Lasalocid[58] K+, Na+, Ca2+, Mg2+
Maduramicin[59] K+, Na+
Monensin[3][60][61] Li+, K+, Na+, Rb+, Ag+, Tl+, Pb2+ Streptomyces cinnamonensis
Narasin[62] K+, Na+, Rb+ Streptomyces aureofaciens
Nigericin[63] K+, Pb2+ Streptomyces hygroscopicus
Nonactin[64][65] K+, Na+, Rb+, Cs+, Tl+, NH4+ Streptomyces tsukubaensis, Streptomyces griseus, Streptomyces chrysomallus, Streptomyces werraensis
Nystatin K+ Streptomyces noursei
PBT2[66] Zn2+, Fe2+, Mn2+, Cu2+ Synthetic analogue of 8-hydroxyquinoline
Pyrazole-pyridine and bis-pyrazole derivatives[67] Cu2+ Synthetic ionophore
Pyrithione[55] Zn2+, Cu2+, Pb2+ Allium stipitatum
Quercetin[68] Zn2+ Widely distributed in nature, found in many vegetables, fruits, berries, herbs, trees and other plants
Salinomycin[69] K+, Na+, Cs+, Sr2+, Ca2+, Mg2+ Streptomyces albus
Semduramicin[70] Na+, Ca2+
Valinomycin[71] K+ Streptomyces species
Zincophorin[3] Zn2+ Streptomyces griseus

See also[]

References[]

  1. ^ a b c d Bakker E1, Bühlmann P, Pretsch E. (1997). "Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics". Chem. Rev. 97 (8): 3083–3132. doi:10.1021/cr940394a. PMID 11851486.{{cite journal}}: CS1 maint: uses authors parameter (link)
  2. ^ Bühlmann P1, Pretsch E, Bakker E. (1998). "Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors". Chem. Rev. 98 (4): 1593–1688. doi:10.1021/cr970113+. PMID 11848943.{{cite journal}}: CS1 maint: uses authors parameter (link)
  3. ^ a b c d e f Ding, Wei-Qun; Lind, Stuart E. (November 2009). "Metal ionophores – An emerging class of anticancer drugs". IUBMB Life. 61 (11): 1013–1018. doi:10.1002/iub.253. PMID 19859983. S2CID 205969630.
  4. ^ Helsel, Marian E.; Franz, Katherine J. (2015). "Pharmacological activity of metal binding agents that alter copper bioavailability". Dalton Transactions. 44 (19): 8760–8770. doi:10.1039/c5dt00634a. PMC 4425619. PMID 25797044.
  5. ^ Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R. (2016). "Chapter 14. Bioinspired Artificial Sodium and Potassium Ion Channels". In Astrid, Sigel; Helmut, Sigel; Roland K.O., Sigel (eds.). The Alkali Metal Ions: Their Role in Life. Metal Ions in Life Sciences. Vol. 16. Springer. pp. 485–556. doi:10.1007/978-3-319-21756-7_14. PMID 26860310.
  6. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Ionophore". doi:10.1351/goldbook.IT06772
  7. ^ a b Freedman, Jeffrey C. (2012). "Ionophores in Planar Lipid Bilayers". Cell Physiology Source Book: 61–66. doi:10.1016/B978-0-12-387738-3.00004-4. ISBN 9780123877383.
  8. ^ "Ionophores - MeSH Result".
  9. ^ Tardito, Saverio; Bassanetti, Irene; Bignardi, Chiara; Elviri, Lisa; Tegoni, Matteo; Mucchino, Claudio; Bussolati, Ovidio; Franchi-Gazzola, Renata; Marchiò, Luciano (27 April 2011). "Copper Binding Agents Acting as Copper Ionophores Lead to Caspase Inhibition and Paraptotic Cell Death in Human Cancer Cells". Journal of the American Chemical Society. 133 (16): 6235–6242. doi:10.1021/ja109413c. PMID 21452832.
  10. ^ Chemistry of the elements (2nd ed.). Oxford: Butterworth-Heinemann. 1997. ISBN 9780750633659.
  11. ^ Trojanowicz, M. (2003). "Analytical applications of planar bilayer lipid membranes". Membrane Science and Technology. 7 (3): 807–845. doi:10.1016/S0927-5193(03)80054-2. ISBN 9780444509406. PMID 15085317.
  12. ^ Steinrauf, L. K.; Hamilton, J. A.; Sabesan, M. N. (1982). "Crystal structure of valinomycin-sodium picrate. Anion effects on valinomycin-cation complexes". Journal of the American Chemical Society. 104 (15): 4085–4091. doi:10.1021/ja00379a008.
  13. ^ Helsel, Marian E.; Franz, Katherine J. (2015). "Pharmacological activity of metal binding agents that alter copper bioavailability". Dalton Transactions. 44 (19): 8760–8770. doi:10.1039/c5dt00634a. PMC 4425619. PMID 25797044.
  14. ^ Sperelakis, Nicholas; Sperelakis, Nick (11 January 2012). "Chapter 4: Ionophores in Planar Lipid Bilayers". Cell physiology sourcebook: essentials of membrane biophysics (Fourth ed.). London, UK. ISBN 978-0-12-387738-3.
  15. ^ a b Kevin II, Dion A; Meujo, Damaris AF; Hamann, Mark T (February 2009). "Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites". Expert Opinion on Drug Discovery. 4 (2): 109–146. doi:10.1517/17460440802661443. PMC 4896753. PMID 23480512.
  16. ^ a b Gupta, Mrinal; Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S. (2014). "Zinc Therapy in Dermatology: A Review". Dermatology Research and Practice. 2014: 709152. doi:10.1155/2014/709152. PMC 4120804. PMID 25120566. S2CID 14591222.
  17. ^ Constable, Peter D.; Hinchcliff, Kenneth W.; Done, Stanley H.; Gruenberg, Walter (22 December 2016). "Chapter 66: Practical Antimicrobial Therapeutics". Veterinary medicine : a textbook of the diseases of cattle, horses, sheep, pigs and goats (Edition 11 ed.). St. Louis, Mo. ISBN 978-0-7020-5246-0.
  18. ^ Kaushik, Vivek; Yakisich, Juan; Kumar, Anil; Azad, Neelam; Iyer, Anand (27 September 2018). "Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers". Cancers. 10 (10): 360. doi:10.3390/cancers10100360. PMC 6211070. PMID 30262730.
  19. ^ "Chloroquine Phosphate Monograph for Professionals". Drugs.com.
  20. ^ "Zinc pyrithione". American Chemical Society.
  21. ^ Wadia, NH (1984). "SMON as seen from Bombay". Acta Neurologica Scandinavica. Supplementum. 100: 159–64. PMID 6091394.
  22. ^ Essack, Sabiha; Bell, John; Burgoyne, Douglas S.; Duerden, Martin; Shephard, Adrian (December 2019). "Topical (local) antibiotics for respiratory infections with sore throat: An antibiotic stewardship perspective". Journal of Clinical Pharmacy and Therapeutics. 44 (6): 829–837. doi:10.1111/jcpt.13012. PMC 6899613. PMID 31407824.
  23. ^ Wenzel, Michaela; Rautenbach, Marina; Vosloo, J. Arnold; Siersma, Tjalling; Aisenbrey, Christopher H. M.; Zaitseva, Ekaterina; Laubscher, Wikus E.; van Rensburg, Wilma; Behrends, Jan C.; Bechinger, Burkhard; Hamoen, Leendert W. (9 October 2018). "The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S". mBio. 9 (5): e00802–18, /mbio/9/5/mBio.00802–18.atom. doi:10.1128/mBio.00802-18. PMC 6178620. PMID 30301848.
  24. ^ Mereles, Derliz; Hunstein, Werner (31 August 2011). "Epigallocatechin-3-gallate (EGCG) for Clinical Trials: More Pitfalls than Promises?". International Journal of Molecular Sciences. 12 (9): 5592–5603. doi:10.3390/ijms12095592. PMC 3189735. PMID 22016611. S2CID 38241204.
  25. ^ Momose, Yuko; Maeda-Yamamoto, Mari; Nabetani, Hiroshi (17 August 2016). "Systematic review of green tea epigallocatechin gallate in reducing low-density lipoprotein cholesterol levels of humans". International Journal of Food Sciences and Nutrition. 67 (6): 606–613. doi:10.1080/09637486.2016.1196655. PMID 27324590. S2CID 39704366.
  26. ^ "Flavonoids". Linus Pauling Institute. 28 April 2014.
  27. ^ "Hinokitiol | 499-44-5". www.chemicalbook.com.
  28. ^ Bentley, Ronald (2008). "A fresh look at natural tropolonoids". Nat. Prod. Rep. 25 (1): 118–138. doi:10.1039/B711474E. PMID 18250899.
  29. ^ "The Japan Food chemical Research Faundation". www.ffcr.or.jp.
  30. ^ L. Brody, Aaron; Strupinsky, E. P.; Kline, Lauri R. (2001). Active Packaging for Food Applications (1 ed.). CRC Press. ISBN 9780367397289.
  31. ^ Hu, Junyi; Shen, Yu; Pang, Song; Gao, Yun; Xiao, Guoyong; Li, Shujun; Xu, Yingqian (December 2013). "Application of hinokitiol potassium salt for wood preservative". Journal of Environmental Sciences. 25: S32–S35. doi:10.1016/S1001-0742(14)60621-5. PMID 25078835.
  32. ^ "Chapter 76:Antifungal Agents". Medical microbiology (4th ed.). Galveston, Tex.: University of Texas Medical Branch at Galveston. 1996. ISBN 9780963117212.
  33. ^ Novilla, Meliton; McClary, David; Laudert, Scott (2017). "Chapter 29: Ionophores". Reproductive and developmental toxicology (Second ed.). Saint Louis. ISBN 9780128042397.
  34. ^ "Antimicrobial Feed Additives - Pharmacology". Merck Veterinary Manual.
  35. ^ Bowman, Maria; Marshall, Kandice K.; Kuchler, Fred; Lynch, Lori (March 2016). "Raised Without Antibiotics: Lessons from Voluntary Labeling of Antibiotic Use Practices in The Broiler Industry". American Journal of Agricultural Economics. 98 (2): 622–642. doi:10.1093/ajae/aaw008. S2CID 155303400.
  36. ^ a b c Krenn, B. M.; Gaudernak, E.; Holzer, B.; Lanke, K.; Van Kuppeveld, F. J. M.; Seipelt, J. (1 January 2009). "Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections". Journal of Virology. 83 (1): 58–64. doi:10.1128/JVI.01543-08. PMC 2612303. PMID 18922875.
  37. ^ a b Lanke, K.; Krenn, B. M.; Melchers, W. J. G.; Seipelt, J.; van Kuppeveld, F. J. M. (1 April 2007). "PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells". Journal of General Virology. 88 (4): 1206–1217. doi:10.1099/vir.0.82634-0. PMID 17374764.
  38. ^ a b c te Velthuis, Aartjan J. W.; van den Worm, Sjoerd H. E.; Sims, Amy C.; Baric, Ralph S.; Snijder, Eric J.; van Hemert, Martijn J.; Andino, Raul (4 November 2010). "Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture". PLOS Pathogens. 6 (11): e1001176. doi:10.1371/journal.ppat.1001176. PMC 2973827. PMID 21079686.
  39. ^ Mizui, Tomokazu; Yamashina, Shunhei; Tanida, Isei; Takei, Yoshiyuki; Ueno, Takashi; Sakamoto, Naoya; Ikejima, Kenichi; Kitamura, Tsuneo; Enomoto, Nobuyuki; Sakai, Tatsuo; Kominami, Eiki; Watanabe, Sumio (17 September 2009). "Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy". Journal of Gastroenterology. 45 (2): 195–203. doi:10.1007/s00535-009-0132-9. PMC 7088329. PMID 19760134.
  40. ^ Qiu, Min; Chen, Yu; Chu, Ying; Song, Siwei; Yang, Na; Gao, Jie; Wu, Zhiwei (October 2013). "Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation". Antiviral Research. 100 (1): 44–53. doi:10.1016/j.antiviral.2013.07.001. PMID 23867132.
  41. ^ a b c de Wilde, Adriaan H.; Jochmans, Dirk; Posthuma, Clara C.; Zevenhoven-Dobbe, Jessika C.; van Nieuwkoop, Stefan; Bestebroer, Theo M.; van den Hoogen, Bernadette G.; Neyts, Johan; Snijder, Eric J. (August 2014). "Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture". Antimicrobial Agents and Chemotherapy. 58 (8): 4875–4884. doi:10.1128/AAC.03011-14. PMC 4136071. PMID 24841269.
  42. ^ TSAI, WEN-PO; NARA, PETER L.; KUNG, HSIANG-FU; OROSZLAN, STEPHEN (April 1990). "Inhibition of Human Immunodeficiency Virus Infectivity by Chloroquine". AIDS Research and Human Retroviruses. 6 (4): 481–489. doi:10.1089/aid.1990.6.481. PMID 1692728.
  43. ^ Romanelli, Frank; Smith, Kelly; Hoven, Ardis (1 August 2004). "Chloroquine and Hydroxychloroquine as Inhibitors of Human Immunodeficiency Virus (HIV-1) Activity". Current Pharmaceutical Design. 10 (21): 2643–2648. doi:10.2174/1381612043383791. PMID 15320751.
  44. ^ Delvecchio, Rodrigo; Higa, Luiza; Pezzuto, Paula; Valadão, Ana; Garcez, Patrícia; Monteiro, Fábio; Loiola, Erick; Dias, André; Silva, Fábio; Aliota, Matthew; Caine, Elizabeth; Osorio, Jorge; Bellio, Maria; O’Connor, David; Rehen, Stevens; de Aguiar, Renato; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar (29 November 2016). "Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models". Viruses. 8 (12): 322. doi:10.3390/v8120322. PMC 5192383. PMID 27916837.
  45. ^ Li, Chunfeng; Zhu, Xingliang; Ji, Xue; Quanquin, Natalie; Deng, Yong-Qiang; Tian, Min; Aliyari, Roghiyh; Zuo, Xiangyang; Yuan, Ling; Afridi, Shabbir Khan; Li, Xiao-Feng; Jung, Jae U.; Nielsen-Saines, Karin; Qin, Frank Xiao-Feng; Qin, Cheng-Feng; Xu, Zhiheng; Cheng, Genhong (October 2017). "Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice". EBioMedicine. 24: 189–194. doi:10.1016/j.ebiom.2017.09.034. PMC 5652284. PMID 29033372.
  46. ^ Logrieco, Antonio; Moretti, Antonio; Ritieni, Alberto; Caiaffa, Maria F.; Macchia, Luigi (2002). "Beauvericin: Chemistry, Biology and Significance". Advances in Microbial Toxin Research and Its Biotechnological Exploitation: 23–30. doi:10.1007/978-1-4757-4439-2_2. ISBN 978-1-4419-3384-3.
  47. ^ Abbott, B J; Fukuda, D S; Dorman, D E; Occolowitz, J L; Debono, M; Farhner, L (1 December 1979). "Microbial transformation of A23187, a divalent cation ionophore antibiotic". Antimicrobial Agents and Chemotherapy. 16 (6): 808–812. doi:10.1128/aac.16.6.808. PMC 352958. PMID 119484.
  48. ^ Raatschen, Nadja; Wenzel, Michaela; Leichert, Lars Ingo Ole; Düchting, Petra; Krämer, Ute; Bandow, Julia Elisabeth (2013). "Extracting iron and manganese from bacteria with ionophores—A mechanism against competitors characterized by increased potency in environments low in micronutrients". Proteomics. 13 (8): 1358–1370. doi:10.1002/pmic.201200556. PMID 23412951. S2CID 24899763.
  49. ^ Xue, Jing; Moyer, Amanda; Peng, Bing; Wu, Jinchang; Hannafon, Bethany N.; Ding, Wei-Qun (1 October 2014). "Chloroquine Is a Zinc Ionophore". PLOS ONE. 9 (10): e109180. Bibcode:2014PLoSO...9j9180X. doi:10.1371/journal.pone.0109180. PMC 4182877. PMID 25271834.
  50. ^ Aggett, P.J.; Delves, H.T.; Harries, J.T.; Bangham, A.D. (March 1979). "The possible role of Diodoquin as a zinc ionophore in the treatment of acrodermatitis enteropathica". Biochemical and Biophysical Research Communications. 87 (2): 513–517. doi:10.1016/0006-291X(79)91825-4. PMID 375935.
  51. ^ Lanke, K.; Krenn, B. M.; Melchers, W. J. G.; Seipelt, J.; van Kuppeveld, F. J. M. (2007). "PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells". Journal of General Virology. 88 (4): 1206–1217. doi:10.1099/vir.0.82634-0. PMID 17374764.
  52. ^ Ovchinnikov, Yu. A.; Ivanov, V. T.; Evstratov, A. V.; Mikhaleva, I. I.; Bystrov, V. F.; Portnova, S. L.; Balashova, T. A.; Meshcheryakova, E. N.; Tulchinsky, V. M. (12 January 2009). "The Enniatin Ionophores. Conformation and Ion Binding Properties". International Journal of Peptide and Protein Research. 6 (6): 465–498. doi:10.1111/j.1399-3011.1974.tb02407.x. PMID 4455641.
  53. ^ Dabbagh-Bazarbachi, Husam; Clergeaud, Gael; Quesada, Isabel M.; Ortiz, Mayreli; O’Sullivan, Ciara K.; Fernández-Larrea, Juan B. (13 August 2014). "Zinc Ionophore Activity of Quercetin and Epigallocatechin-gallate: From Hepa 1-6 Cells to a Liposome Model". Journal of Agricultural and Food Chemistry. 62 (32): 8085–8093. doi:10.1021/jf5014633. PMID 25050823.
  54. ^ Sorochkina, Alexandra I.; Plotnikov, Egor Y.; Rokitskaya, Tatyana I.; Kovalchuk, Sergei I.; Kotova, Elena A.; Sychev, Sergei V.; Zorov, Dmitry B.; Antonenko, Yuri N. (24 July 2012). "N-Terminally Glutamate-Substituted Analogue of Gramicidin A as Protonophore and Selective Mitochondrial Uncoupler". PLOS ONE. 7 (7): e41919. Bibcode:2012PLoSO...741919S. doi:10.1371/journal.pone.0041919. PMC 3404012. PMID 22911866. S2CID 816492.
  55. ^ a b Krenn, B. M.; Gaudernak, E.; Holzer, B.; Lanke, K.; Kuppeveld, F. J. M. Van; Seipelt, J. (1 January 2009). "Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections". Journal of Virology. 83 (1): 58–64. doi:10.1128/JVI.01543-08. PMC 2612303. PMID 18922875. S2CID 5298792.
  56. ^ Toeplitz, Barbara K.; Cohen, Allen I.; Funke, Phillip T.; Parker, William L.; Gougoutas, Jack Z. (1 June 1979). "Structure of ionomycin - a novel diacidic polyether antibiotic having high affinity for calcium ions". Journal of the American Chemical Society. 101 (12): 3344–3353. doi:10.1021/ja00506a035.
  57. ^ Gräfe, U.; Reinhardt, G.; Miosga, N. (1989). "Monovalent cation specificity of passive transport mediated by laidlomycin and 26-deoxylaidlomycin". Journal of Basic Microbiology. 29 (6): 391–394. doi:10.1002/jobm.3620290620. PMID 2614677. S2CID 38193390.
  58. ^ Antonenko, Yuri N.; Yaguzhinsky, Lev S. (18 February 1988). "The ion selectivity of nonelectrogenic ionophores measured on a bilayer lipid membrane: nigericin, monensin, A23187 and lasalocid A". Biochimica et Biophysica Acta (BBA) - Biomembranes. 938 (2): 125–130. doi:10.1016/0005-2736(88)90151-4. PMID 19927398.
  59. ^ Maron, Maxim I.; Magle, Crystal T.; Czesny, Beata; Turturice, Benjamin A.; Huang, Ruili; Zheng, Wei; Vaidya, Akhil B.; Williamson, Kim C. (1 March 2016). "Maduramicin Rapidly Eliminates Malaria Parasites and Potentiates the Gametocytocidal Activity of the Pyrazoleamide PA21A050". Antimicrobial Agents and Chemotherapy. 60 (3): 1492–1499. doi:10.1128/AAC.01928-15. PMC 4775975. PMID 26711768.
  60. ^ Huczyński, Adam; Ratajczak-Sitarz, Małgorzata; Katrusiak, Andrzej; Brzezinski, Bogumil (15 December 2007). "Molecular structure of the 1:1 inclusion complex of monensin A lithium salt with acetonitrile". Journal of Molecular Structure. 871 (1): 92–97. Bibcode:2007JMoSt.871...92H. doi:10.1016/j.molstruc.2006.07.046.
  61. ^ Pinkerton, Mary; Steinrauf, L. K. (14 May 1970). "Molecular structure of monovalent metal cation complexes of monensin". Journal of Molecular Biology. 49 (3): 533–546. doi:10.1016/0022-2836(70)90279-2. PMID 5453344.
  62. ^ "Narasin | Anticoccidial drugs | Drugs | Various | Poultrymed". www.poultrymed.com.
  63. ^ Muñoz-Planillo, Raúl; Kuffa, Peter; Martínez-Colón, Giovanny; Smith, Brenna L.; Rajendiran, Thekkelnaycke M.; Núñez, Gabriel (27 June 2013). "K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter". Immunity. 38 (6): 1142–1153. doi:10.1016/j.immuni.2013.05.016. PMC 3730833. PMID 23809161.
  64. ^ Marrone, Tami J.; Merz, Kenneth M. (September 1992). "Molecular recognition of potassium ion by the naturally occurring antibiotic ionophore nonactin". Journal of the American Chemical Society. 114 (19): 7542–7549. doi:10.1021/ja00045a030.
  65. ^ Makrlík, Emanuel; Toman, Petr; Vaňura, Petr (April 2014). "Complexation of the thallium cation with nonactin: an experimental and theoretical study". Monatshefte für Chemie - Chemical Monthly. 145 (4): 551–555. doi:10.1007/s00706-014-1153-5. S2CID 95393648.
  66. ^ Bohlmann, Lisa; De Oliveira, David M. P.; El-Deeb, Ibrahim M.; Brazel, Erin B.; Harbison-Price, Nichaela; Ong, Cheryl-lynn Y.; Rivera-Hernandez, Tania; Ferguson, Scott A.; Cork, Amanda J.; Phan, Minh-Duy; Soderholm, Amelia T.; Davies, Mark R.; Nimmo, Graeme R.; Dougan, Gordon; Schembri, Mark A.; Cook, Gregory M.; McEwan, Alastair G.; von Itzstein, Mark; McDevitt, Christopher A.; Walker, Mark J. (11 December 2018). "Chemical Synergy between Ionophore PBT2 and Zinc Reverses Antibiotic Resistance". mBio. 9 (6): e02391–18, /mbio/9/6/mBio.02391–18.atom. doi:10.1128/mBio.02391-18. PMC 6299484. PMID 30538186.
  67. ^ Tardito, Saverio; Bassanetti, Irene; Bignardi, Chiara; Elviri, Lisa; Tegoni, Matteo; Mucchino, Claudio; Bussolati, Ovidio; Franchi-Gazzola, Renata; Marchiò, Luciano (27 April 2011). "Copper Binding Agents Acting as Copper Ionophores Lead to Caspase Inhibition and Paraptotic Cell Death in Human Cancer Cells". Journal of the American Chemical Society. 133 (16): 6235–6242. doi:10.1021/ja109413c. PMID 21452832.
  68. ^ Dabbagh-Bazarbachi, Husam; Clergeaud, Gael; Quesada, Isabel M.; Ortiz, Mayreli; O’Sullivan, Ciara K.; Fernández-Larrea, Juan B. (13 August 2014). "Zinc Ionophore Activity of Quercetin and Epigallocatechin-gallate: From Hepa 1-6 Cells to a Liposome Model". Journal of Agricultural and Food Chemistry. 62 (32): 8085–8093. doi:10.1021/jf5014633. PMID 25050823.
  69. ^ Huczynski, Adam (2012). "Salinomycin – A New Cancer Drug Candidate". Chemical Biology & Drug Design. 79 (3): 235–238. doi:10.1111/j.1747-0285.2011.01287.x. PMID 22145602. S2CID 40843415.
  70. ^ Rychen, Guido; Aquilina, Gabriele; Azimonti, Giovanna; Bampidis, Vasileios; Bastos, Maria de Lourdes; Bories, Georges; Chesson, Andrew; Cocconcelli, Pier Sandro; Flachowsky, Gerhard; Kolar, Boris; Kouba, Maryline; López‐Alonso, Marta; Puente, Secundino López; Mantovani, Alberto; Mayo, Baltasar; Ramos, Fernando; Saarela, Maria; Villa, Roberto Edoardo; Wallace, Robert John; Wester, Pieter; Brantom, Paul; Halle, Ingrid; Beelen, Patrick van; Holczknecht, Orsolya; Vettori, Maria Vittoria; Gropp, Jürgen (2018). "Scientific Opinion on the safety and efficacy of Aviax 5% (semduramicin sodium) for chickens for fattening". EFSA Journal. 16 (7): e05341. doi:10.2903/j.efsa.2018.5341. PMC 7009336. PMID 32625977.
  71. ^ Thompson, Michael; Krull, U.J. (September 1982). "The electroanalytical response of the bilayer lipid membrane to valinomycin: membrane cholesterol content". Analytica Chimica Acta. 141: 33–47. doi:10.1016/S0003-2670(01)95308-5.

External links[]

Retrieved from ""