Mobile genetic elements

From Wikipedia, the free encyclopedia

Mobile genetic elements (MGEs) sometimes called selfish genetic elements[1] are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In humans, approximately 50% of the genome is thought to be MGEs.[2] MGEs play a distinct role in evolution. Gene duplication events can also happen through the mechanism of MGEs. MGEs can also cause mutations in protein coding regions, which alters the protein functions. They can also rearrange genes in the host genome. One of the examples of MGEs in evolutionary context is that virulence factors and antibiotic resistance genes of MGEs can be transported to share them with neighboring bacteria. Newly acquired genes through this mechanism can increase fitness by gaining new or additional functions. On the other hand, MGEs can also decrease fitness by introducing disease-causing alleles or mutations.[3] The set of MGEs in an organism is called a mobilome, which is composed of a large number of plasmids, transposons and viruses.[4]

Mobile genetic elements in the cell (left) and the ways they can be acquired (right)

Types[]

  • Plasmids: They are generally circular extrachromosomal DNA molecules that replicate and are transmitted independent of chromosomal DNA. They are present in prokaryotes (bacteria and archaea) and sometimes in eukaryotic organisms such as yeast. Plasmids during their cycle carry genes from one organism to another through a process called conjugation. They also often inject genes that make bacteria resistant to antibiotics.[5][6]
    • Cloning vectors: they are a type of hybrid plasmids with bacteriophages, used to transfer and replicate DNA fragments that are inserted by means of recombinant DNA techniques. To serve as a vector, it must be able to replicate together with the DNA fragment it carries. Examples are cosmids and phagemids.[7]
  • Transposons: They are DNA sequences that can move and replicate in different parts of a cell's genome. Also called "jumping genes" they can be transferred horizontally between organisms that live in symbiosis. Transposons are present in all living things and in giant viruses.[8]
    • DNA transposons: they are transposons that move directly from one position to another in the genome using a transposase to cut and stick at another locus.[9]
    • Retrotransposons: they are transposons that move in the genome, being transcribed into RNA and later into DNA by reverse transcriptase. Retrotransposons are present exclusively in eukaryotes.[10]
    • Retroposons: they are exclusive transposons of mammals that move in the genome, being transcribed into DNA and then into RNA, without coding for reverse transcriptase.[8]
  • Integrons: These are gene cassettes that usually carry antibiotic resistance genes to bacterial plasmids and transposons.[11]
  • Introns: Group I and II introns are nucleotide sequences with catalytic activity that are part of host transcripts and act as ribozymes that can invade genes that encode tRNA, rRNA, and proteins. They are present in all cellular organisms and viruses.[12]
  • Viral agents: They are mostly infective acellular agents that replicate in cellular hosts. During their infective cycle they can carry genes from one host to another. They can also carry genes from one organism to another in case that viral agent infects more than two different species. Traditionally they are considered separate entities, but the truth is that many researchers who study their characteristics and evolution refer to them as mobile genetic elements. This is based on the fact that viral agents are simple particles or molecules that replicate and are transferred between various hosts like the remaining non-viral mobile genetic elements. According to this point of view, viruses and other viral agents should not be considered living beings and should be better conceived as mobile genetic elements. Viral agents are evolutionarily connected with various mobile genetic elements.[13][14][15][1][4][16]
    • Viruses: They are viral agents composed of a molecule of genetic material (DNA or RNA) and with the ability to form complex particles called virions to be able to move easily between their hosts. Viruses are present in all living things. Viral particles are manufactured by the host's replicative machinery for horizontal transfer.[13][14][17]
    • Satellite nucleic acids: they are DNA or RNA molecules, which are encapsidated as a stowaway in the virions of certain helper viruses and which depend on these to be able to replicate. Although they are sometimes considered genetic elements of their helper viruses, they are not always found within their helper viruses.[13][14][18]
    • Viroids: They are viral agents that consist of circular RNA molecules that infect and replicate in plants.[13][14][19]
    • Endogenous viral element: They are viral nucleic acids integrated into the genome of a cell. They can move and replicate multiple times in the host cell without causing disease or mutation. They are considered autonomous forms of transposons. Examples are proviruses and endogenous retroviruses.[20]

Research examples[]

CRISPR-Cas systems in bacteria and archaea are adaptive immune systems to protect against deadly consequences from MGEs. Using comparative genomic and phylogenetic analysis, researchers found that CRISPR-Cas variants are associated with distinct types of MGEs such as transposable elements. In addition, CRISPR-Cas controls transposable elements for their propagation.[21]

MGEs such as plasmids by a horizontal transmission are generally beneficial to an organism. The ability of transferring plasmids (sharing) is important in an evolutionary perspective. Tazzyman and Bonhoeffer found that fixation (receiving) of the transferred plasmids in a new organism is just as important as the ability to transfer them.[22] Beneficial rare and transferable plasmids have a higher fixation probability, whereas deleterious transferable genetic elements have a lower fixation probability to avoid lethality to the host organisms.

One type of MGEs, namely the Intergrative Conjugative Elements (ICEs) are central to horizontal gene transfer shaping the genomes of prokaryotes enabling rapid acquisition of novel adaptive traits.[23][24]

As a representative example of ICEs, the ICEBs1 is well-characterized for its role in the global DNA damage SOS response of Bacillus subtilis[25] and also its potential link to the radiation and desiccation resistance of Bacillus pumilus SAFR-032 spores,[26] isolated from spacecraft cleanroom facilities.[27][28][29]

Transposition by transposable elements is mutagenic. Thus, organisms have evolved to repress the transposition events, and failure to repress the events causes cancers in somatic cells. Cecco et al. found that during early age transcription of retrotransposable elements are minimal in mice, but in advanced age the transcription level increases.[30] This age-dependent expression level of transposable elements is reduced by calorie restriction diet.

Diseases[]

The consequence of mobile genetic elements can alter the transcriptional patterns, which frequently leads to genetic disorders such as immune disorders, breast cancer, multiple sclerosis, and amyotrophic lateral sclerosis. In humans, stress can lead to transactional activation of MGEs such as endogenous retroviruses, and this activation has been linked to neurodegeneration.[31]

Other notes[]

The total of all mobile genetic elements in a genome may be referred to as the mobilome.

Barbara McClintock was awarded the 1983 Nobel Prize in Physiology or Medicine "for her discovery of mobile genetic elements" (transposable elements).[32]

Mobile genetic elements play a critical role in the spread of virulence factors, such as exotoxins and exoenzymes, among bacteria. Strategies to combat certain bacterial infections by targeting these specific virulence factors and mobile genetic elements have been proposed.[33]

See also[]

References[]

  1. ^ a b Eugene Koonin, Valerian V Doljja (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews.
  2. ^ Mu, X.; Ahmad, S.; Hur, S. (2016). Endogenous Retroelements and the Host Innate Immune Sensors. Advances in Immunology. 132. pp. 47–69. doi:10.1016/bs.ai.2016.07.001. ISBN 9780128047972. PMC 5135014. PMID 27769507.
  3. ^ Singh, Parmit Kumar; Bourque, Guillaume; Craig, Nancy L.; Dubnau, Josh T.; Feschotte, Cédric; Flasch, Diane A.; Gunderson, Kevin L.; Malik, Harmit Singh; Moran, John V. (2014-11-18). "Mobile genetic elements and genome evolution 2014". Mobile DNA. 5: 26. doi:10.1186/1759-8753-5-26. PMC 4363357. PMID 30117500.
  4. ^ a b Koonin, E. V.; Wolf, Y. I. (2008). "Genomics of bacteria and archaea: The emerging dynamic view of the prokaryotic world". Nucleic Acids Research. 36 (21): 6688–6719. doi:10.1093/nar/gkn668. PMC 2588523. PMID 18948295.
  5. ^ David Summers (1996). "Chapter 1 – The Function and Organization of Plasmids". The Biology of Plasmids (First ed.). Wiley-Blackwell. pp. 21–22. ISBN 978-0632034369.
  6. ^ Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F (September 2010). "Mobility of plasmids". Microbiology and Molecular Biology Reviews. 74 (3): 434–52. doi:10.1128/MMBR.00020-10. PMC 2937521. PMID 20805406.
  7. ^ B. R. Glick; J. J. Pasternak (2005). Molecular Biotechnology Principles and Applications of Recombinant DNA (3rd ed.). ASM Press. ISBN 9781555816124.
  8. ^ a b Makałowski W, Gotea V, Pande A, Makałowska I (2019). "Transposable Elements: Classification, Identification, and Their Use As a Tool For Comparative Genomics". In Anisimova M (ed.). Evolutionary Genomics. Methods in Molecular Biology. 1910. Clifton, N.J. pp. 185–86. doi:10.1007/978-1-4939-9074-0_6. ISBN 978-3-8055-8341-1. OCLC 145014779. PMID 31278665.
  9. ^ Muñoz-López, Martín; García-Pérez, José L. (April 2010). "DNA Transposons: Nature and Applications in Genomics". Current Genomics. 11 (2): 115–128. doi:10.2174/138920210790886871. ISSN 1389-2029. PMC 2874221. PMID 20885819.
  10. ^ Richardson, Sandra R.; Garcia-Perez, José Luis; Doucet, Aurélien J.; Kopera, Huira C.; Moldovan, John B.; Moran, John V. (2015-03-05). "The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes". Microbiology Spectrum. 3 (2): 1165–1208. doi:10.1128/microbiolspec.mdna3-0061-2014. ISBN 9781555819200. PMC 4498412. PMID 26104698.
  11. ^ Kovalevskaya, N. P. (2002). "Mobile Gene Cassettes and Integrons". Molecular Biology. 36 (2): 196–201. doi:10.1023/A:1015361704475. S2CID 2078235.
  12. ^ Hausner, Georg; Hafez, Mohamed; Edgell, David R. (2014-03-10). "Bacterial group I introns: mobile RNA catalysts". Mobile DNA. 5 (1): 8. doi:10.1186/1759-8753-5-8. PMC 3984707. PMID 24612670.
  13. ^ a b c d Expand, amend, and emend the International Code of Virus Classification and Nomenclature (ICVCN; “the Code”) and the Statutes to clearly define the remit of the ICTV. ICTV.
  14. ^ a b c d Eugene V Koonin, Valerian V Dolja, Mart Krupovic, Jens H. Kuhn (2021). Viruses Defined by the Position of the Virosphere within the Replicator Space. American Society for Microbiology.
  15. ^ David Moreira, Purificación-Lopéz Garcia (2009). Ten reasons to exclude viruses from the tree of life. Nature.
  16. ^ Rankin, D. J.; Rocha, E. P. C.; Brown, S. P. (January 2011). "What traits are carried on mobile genetic elements, and why?". Heredity. 106 (1): 1–10. doi:10.1038/hdy.2010.24. PMC 3183850. PMID 20332804.
  17. ^ Crawford, Dorothy (2011). Viruses: A Very Short Introduction. New York: Oxford University Press. p. 4. ISBN 978-0199574858.
  18. ^ "3 - Satellites and Other Virus-dependent Nucleic Acids - Subviral Agents - Subviral Agents (2011)". International Committee on Taxonomy of Viruses (ICTV). (newer version; does not mention satellites)
  19. ^ "ICTV Report Viroids".
  20. ^ Feschotte, Cédric; Gilbert, Clement (March 2012). "Endogenous viruses: insights into viral evolution and impact on host biology" (PDF). Nat Rev Genet. 13 (4): 83–96. doi:10.1038/nrg3199. PMID 22421730. S2CID 205485232.
  21. ^ Peters, Joseph E.; Makarova, Kira S.; Shmakov, Sergey; Koonin, Eugene V. (2017-08-29). "Recruitment of CRISPR-Cas systems by Tn7-like transposons". Proceedings of the National Academy of Sciences. 114 (35): E7358–E7366. doi:10.1073/pnas.1709035114. PMC 5584455. PMID 28811374.
  22. ^ Tazzyman, Samuel J.; Bonhoeffer, Sebastian (2013). "Fixation probability of mobile genetic elements such as plasmids". Theoretical Population Biology. 90: 49–55. doi:10.1016/j.tpb.2013.09.012. PMID 24080312.
  23. ^ Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, Rocha EP (August 2018). "The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation". PLOS Genet. 7 (8): e1002222. doi:10.1371/journal.pgen.1002222. PMC 3158045. PMID 21876676.
  24. ^ Wozniak RA, Waldor MK (August 2010). "Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow". Nat Rev Microbiol. 8 (8): 552–563. doi:10.1038/nrmicro2382. PMID 20601965. S2CID 21460836.
  25. ^ Auchtung JM, Lee CA, Garrison KL, Grossman AD (June 2007). "Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis". PLOS Genet. 64 (6): 1515–1528. doi:10.1111/j.1365-2958.2007.05748.x. PMC 3320793. PMID 17511812.
  26. ^ Tirumalai MR, Fox GE (September 2013). "An ICEBs1-like element may be associated with the extreme radiation and desiccation resistance of Bacillus pumilus SAFR-032 spores". Extremophiles. 17 (5): 767–774. doi:10.1007/s00792-013-0559-z. PMID 23812891. S2CID 8675124.
  27. ^ Link L, Sawyer J, Venkateswaran K, Nicholson W (February 2004). "Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean Spacecraft Assembly Facility". Microb Ecol. 47 (2): 159–163. doi:10.1007/s00248-003-1029-4. PMID 14502417. S2CID 13416635.
  28. ^ Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K (December 2005). "Survival of spacecraft-associated microorganisms under simulated martian UV irradiation". Appl Environ Microbiol. 71 (12): 8147–8156. doi:10.1128/AEM.71.12.8147-8156.2005. PMC 1317311. PMID 16332797.
  29. ^ Kempf MJ, Chen F, Kern R, Venkateswaran K (June 2005). "Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility". Astrobiology. 5 (3): 391–405. doi:10.1089/ast.2005.5.391. PMID 15941382.
  30. ^ De Cecco, Marco; Criscione, Steven W.; Peterson, Abigail L.; Neretti, Nicola; Sedivy, John M.; Kreiling, Jill A. (2013). "Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues". Aging. 5 (12): 867–883. doi:10.18632/aging.100621. PMC 3883704. PMID 24323947.
  31. ^ Antony, Joseph M; Marle, Guido van; Opii, Wycliffe; Butterfield, D Allan; Mallet, François; Yong, Voon Wee; Wallace, John L; Deacon, Robert M; Warren, Kenneth (October 2004). "Human endogenous retrovirus glycoprotein–mediated induction of redox reactants causes oligodendrocyte death and demyelination". Nature Neuroscience. 7 (10): 1088–1095. doi:10.1038/nn1319. PMID 15452578. S2CID 9882712.
  32. ^ "The Nobel Prize in Physiology or Medicine 1983". nobelprize.org. Retrieved 14 July 2010.
  33. ^ Keen, E. C. (December 2012). "Paradigms of pathogenesis: Targeting the mobile genetic elements of disease". Frontiers in Cellular and Infection Microbiology. 2: 161. doi:10.3389/fcimb.2012.00161. PMC 3522046. PMID 23248780.

Bibliography[]

Retrieved from ""