NISAR (satellite)

From Wikipedia, the free encyclopedia

NASA-ISRO Synthetic Aperture Radar (NISAR)
NISAR artist concept.jpg
Artist's concept of the NASA-ISRO Synthetic Aperture Radar (NISAR) satellite in orbit.
NamesNASA-ISRO Synthetic Aperture Radar
NISAR
Mission typeRadar imaging
OperatorNASA / ISRO
Websitenisar.jpl.nasa.gov
www.sac.gov.in/nisar/
Mission duration3 years (planned) [1][2]
Spacecraft properties
SpacecraftNISAR
BusI-3K[3]
ManufacturerISRO
Launch mass2,800 kg (6,200 lb) [4]
Power6,500 watts
Start of mission
Launch date29 January 2023 (planned)[5][6]
RocketGSLV Mk. II
(4 meter fairing) [3]
Launch siteSatish Dhawan Space Center
ContractorISRO
Orbital parameters
Reference systemGeocentric orbit[1]
RegimeSun-synchronous orbit[7]
Altitude747 km (464 mi)
Perigee altitude747 km (464 mi)
Apogee altitude747 km (464 mi)
Inclination98.5°
Transponders
BandS-band
L-band
Instruments
L-band (24-cm wavelength) Polarimetric Synthetic Aperture Radar
S-band (12-cm wavelength) Polarimetric Synthetic Aperture Radar
NISAR Mission Logo.png
NISAR mission logo  

The NASA-ISRO Synthetic Aperture Radar (NISAR) mission is a joint project between NASA and ISRO to co-develop and launch a dual-frequency synthetic aperture radar on an Earth observation satellite. The satellite will be the first radar imaging satellite to use dual frequencies. It will be used for remote sensing, to observe and understand natural processes on Earth. For example, its left-facing instruments will study the Antarctic cryosphere.[8] With a total cost estimated at US$1.5 billion, NISAR is likely to be the world's most expensive Earth-imaging satellite.[9]

Overview[]

The NASA-ISRO Synthetic Aperture Radar, or NISAR satellite, will use advanced radar imaging to map the elevation of Earth's land and ice masses 4 to 6 times a month at resolutions of 5 to 10 meters.[10] It is designed to observe and measure some of the planet's most complex natural processes, including ecosystem disturbances, ice-sheet collapse, and natural hazards such as earthquakes, tsunamis, volcanoes and landslides.[11][12]

Under the terms of the agreement, NASA will provide the mission's L-band synthetic aperture radar (SAR), a high-rate telecommunication subsystem for scientific data GPS receivers, a solid-state recorder, and a payload data subsystem. ISRO will provide the satellite bus, an S-band synthetic aperture radar, the launch vehicle, and associated launch services.[13]

All data from NISAR would be freely available 1 to 2 days after observation and within hours in case of emergencies like natural disasters.[10] Data collected from NISAR will reveal information about the evolution and state of Earth's crust, help scientists better understand our planet's natural processes and changing climate, and aid future resource and hazard management. The mission is a partnership between NASA and ISRO.[11]

The satellite will be three-axis stabilized. It will use a 12 m (39 ft) deployable mesh antenna and will operate on both the L- and S- microwave bands.[11] The aperture mesh reflector (antenna) will be supplied by Astro Aerospace, a Northrop Grumman company.[14]

The satellite will be launched from India aboard a GSLV Mk II on 29 January 2023.[5] The orbit will be a Sun-synchronous, dawn-to-dusk type. The planned mission life is three years.[1] The project has passed the first stage of the design validation phase and has been reviewed and approved by NASA.[15]

ISRO's share of the project cost is about 788 crore (US$100 million), and NASA's share is about US$808 million.[16][17]

Payload[]

  • L-band (1.25 GHz; 24 cm wavelength [3]) polarimetric SAR, to be produced by NASA.
  • S-band (3.20 GHz; 9.3 cm wavelength [3]) polarimetric SAR, to be produced by ISRO.[15]

See also[]

References[]

  1. ^ a b c "Satellite: NISAR". World Meteorological Organization (WMO). 4 January 2020. Retrieved 16 March 2021.
  2. ^ "Optimization of Debris Shields on the NISAR Mission's L-Band Radar Instrument" (PDF). conference.sdo.esoc.esa.int. ESA Space Debris Office. 18–21 April 2017. Retrieved 16 March 2021.
  3. ^ a b c d "Overview of NISAR Mission and Airborne L- and S- SAR" (PDF). sac.gov.in. Space Applications Centre, ISRO. August 2018. Retrieved 16 March 2021.
  4. ^ Neeck, Steven. "The NASA Earth Science Program and Small Satellites" (PDF). dlr.de. DLR. Retrieved 23 November 2018.
  5. ^ a b "SMSR Integrated Master Schedule" (PDF). Office of Safety and Mission Assurance. NASA. 7 June 2021. Archived from the original (PDF) on 14 June 2021. Retrieved 14 June 2021.
  6. ^ M. P., Sidharth (9 March 2021). "NASA-ISRO Earth observation satellite launch on GSLV Mk II by January 2023". WION. Retrieved 16 March 2021.
  7. ^ "NISAR Mission". ISRO. 19–20 November 2015. Retrieved 16 March 2021.
  8. ^ Witze, Alexandra (4 February 2019). "Arctic scientists iced out by U.S.–India radar mission". Nature. 566 (7742): 18. doi:10.1038/d41586-019-00278-8. PMID 30723349. Retrieved 16 March 2021.
  9. ^ "NASA, ISRO jointly working on project NISAR". NASA/JPL (Press release). SAR Journal. 26 May 2017. Retrieved 16 March 2021.
  10. ^ a b "Landslide Hazards to Infrastructure" (PDF). nisar.jpl.nasa.gov. NASA (JPL). 2017. Archived from the original (PDF) on 21 March 2019. Retrieved 16 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  11. ^ a b c "NASA-ISRO SAR Mission (NISAR)". Jet Propulsion Laboratory. Retrieved 16 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  12. ^ "NASA-ISRO SAR (NISAR) Mission Science Users' Handbook" (PDF). NASA. Retrieved 27 May 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  13. ^ "U.S., India to Collaborate on Mars Exploration, Earth-Observing Mission". NASA. 30 September 2014. Retrieved 16 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  14. ^ White, AnnaMaria (30 October 2015). "NASA Jet Propulsion Laboratory Selects Northrop Grumman's Astro Aerospace for NISAR Reflector" (Press release). Northrop Grumman Corporation. GlobeNewswire. Retrieved 16 March 2021.
  15. ^ a b "ISRO's instrument design passes Nasa review". The Times of India. 31 July 2014. Retrieved 16 March 2021.
  16. ^ "Rajya Sabha Q. No.2223, Session:243 "JOINT PROJECT BETWEEN NASA AND ISRO"" (PDF). Department of Space. 3 August 2017. Archived from the original (PDF) on 3 August 2017. Retrieved 16 March 2021.
  17. ^ "Joint Project between NASA and ISRO". Press Information Bureau, Government of India. 3 August 2017. Retrieved 16 March 2021.
Retrieved from ""