In linear algebra , a nilpotent matrix is a square matrix N such that
N
k
=
0
{\displaystyle N^{k}=0\,}
for some positive integer
k
{\displaystyle k}
. The smallest such
k
{\displaystyle k}
is called the index of
N
{\displaystyle N}
,[1] sometimes the degree of
N
{\displaystyle N}
.
More generally, a nilpotent transformation is a linear transformation
L
{\displaystyle L}
of a vector space such that
L
k
=
0
{\displaystyle L^{k}=0}
for some positive integer
k
{\displaystyle k}
(and thus,
L
j
=
0
{\displaystyle L^{j}=0}
for all
j
≥
k
{\displaystyle j\geq k}
).[2] [3] [4] Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings .
Examples [ ]
Example 1 [ ]
The matrix
A
=
[
0
1
0
0
]
{\displaystyle A={\begin{bmatrix}0&1\\0&0\end{bmatrix}}}
is nilpotent with index 2, since
A
2
=
0
{\displaystyle A^{2}=0}
.
Example 2 [ ]
More generally, any
n
{\displaystyle n}
-dimensional triangular matrix with zeros along the main diagonal is nilpotent, with index
≤
n
{\displaystyle \leq n}
. For example, the matrix
B
=
[
0
2
1
6
0
0
1
2
0
0
0
3
0
0
0
0
]
{\displaystyle B={\begin{bmatrix}0&2&1&6\\0&0&1&2\\0&0&0&3\\0&0&0&0\end{bmatrix}}}
is nilpotent, with
B
2
=
[
0
0
2
7
0
0
0
3
0
0
0
0
0
0
0
0
]
;
B
3
=
[
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
]
;
B
4
=
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
.
{\displaystyle B^{2}={\begin{bmatrix}0&0&2&7\\0&0&0&3\\0&0&0&0\\0&0&0&0\end{bmatrix}};\ B^{3}={\begin{bmatrix}0&0&0&6\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix}};\ B^{4}={\begin{bmatrix}0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix}}.}
The index of
B
{\displaystyle B}
is therefore 4.
Example 3 [ ]
Although the examples above have a large number of zero entries, a typical nilpotent matrix does not. For example,
C
=
[
5
−
3
2
15
−
9
6
10
−
6
4
]
C
2
=
[
0
0
0
0
0
0
0
0
0
]
{\displaystyle C={\begin{bmatrix}5&-3&2\\15&-9&6\\10&-6&4\end{bmatrix}}\qquad C^{2}={\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}}}
although the matrix has no zero entries.
Example 4 [ ]
Additionally, any matrices of the form
[
a
1
a
1
⋯
a
1
a
2
a
2
⋯
a
2
⋮
⋮
⋱
⋮
−
a
1
−
a
2
−
…
−
a
n
−
1
−
a
1
−
a
2
−
…
−
a
n
−
1
…
−
a
1
−
a
2
−
…
−
a
n
−
1
]
{\displaystyle {\begin{bmatrix}a_{1}&a_{1}&\cdots &a_{1}\\a_{2}&a_{2}&\cdots &a_{2}\\\vdots &\vdots &\ddots &\vdots \\-a_{1}-a_{2}-\ldots -a_{n-1}&-a_{1}-a_{2}-\ldots -a_{n-1}&\ldots &-a_{1}-a_{2}-\ldots -a_{n-1}\end{bmatrix}}}
such as
[
5
5
5
6
6
6
−
11
−
11
−
11
]
{\displaystyle {\begin{bmatrix}5&5&5\\6&6&6\\-11&-11&-11\end{bmatrix}}}
or
[
1
1
1
1
2
2
2
2
4
4
4
4
−
7
−
7
−
7
−
7
]
{\displaystyle {\begin{bmatrix}1&1&1&1\\2&2&2&2\\4&4&4&4\\-7&-7&-7&-7\end{bmatrix}}}
square to zero.
Example 5 [ ]
Perhaps some of the most striking examples of nilpotent matrices are
n
×
n
{\displaystyle n\times n}
square matrices of the form:
[
2
2
2
⋯
1
−
n
n
+
2
1
1
⋯
−
n
1
n
+
2
1
⋯
−
n
1
1
n
+
2
⋯
−
n
⋮
⋮
⋮
⋱
⋮
]
{\displaystyle {\begin{bmatrix}2&2&2&\cdots &1-n\\n+2&1&1&\cdots &-n\\1&n+2&1&\cdots &-n\\1&1&n+2&\cdots &-n\\\vdots &\vdots &\vdots &\ddots &\vdots \end{bmatrix}}}
The first few of which are:
[
2
−
1
4
−
2
]
[
2
2
−
2
5
1
−
3
1
5
−
3
]
[
2
2
2
−
3
6
1
1
−
4
1
6
1
−
4
1
1
6
−
4
]
[
2
2
2
2
−
4
7
1
1
1
−
5
1
7
1
1
−
5
1
1
7
1
−
5
1
1
1
7
−
5
]
…
{\displaystyle {\begin{bmatrix}2&-1\\4&-2\end{bmatrix}}\qquad {\begin{bmatrix}2&2&-2\\5&1&-3\\1&5&-3\end{bmatrix}}\qquad {\begin{bmatrix}2&2&2&-3\\6&1&1&-4\\1&6&1&-4\\1&1&6&-4\end{bmatrix}}\qquad {\begin{bmatrix}2&2&2&2&-4\\7&1&1&1&-5\\1&7&1&1&-5\\1&1&7&1&-5\\1&1&1&7&-5\end{bmatrix}}\qquad \ldots }
These matrices are nilpotent but there are no zero entries in any powers of them less than the index.[5]
Example 6 [ ]
Consider the linear space of polynomials of a bounded degree. The derivative operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix.
Characterization [ ]
This section does not cite any sources . Please help by adding citations to reliable sources . Unsourced material may be challenged and removed . (May 2018 ) (Learn how and when to remove this template message )
For an
n
×
n
{\displaystyle n\times n}
square matrix
N
{\displaystyle N}
with real (or complex ) entries, the following are equivalent:
N
{\displaystyle N}
is nilpotent.
The characteristic polynomial for
N
{\displaystyle N}
is
det
(
x
I
−
N
)
=
x
n
{\displaystyle \det \left(xI-N\right)=x^{n}}
.
The minimal polynomial for
N
{\displaystyle N}
is
x
k
{\displaystyle x^{k}}
for some positive integer
k
≤
n
{\displaystyle k\leq n}
.
The only complex eigenvalue for
N
{\displaystyle N}
is 0.
The last theorem holds true for matrices over any field of characteristic 0 or sufficiently large characteristic. (cf. Newton's identities )
This theorem has several consequences, including:
The index of an
n
×
n
{\displaystyle n\times n}
nilpotent matrix is always less than or equal to
n
{\displaystyle n}
. For example, every
2
×
2
{\displaystyle 2\times 2}
nilpotent matrix squares to zero.
The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible .
The only nilpotent diagonalizable matrix is the zero matrix.
Classification [ ]
Consider the
n
×
n
{\displaystyle n\times n}
shift matrix :
S
=
[
0
1
0
…
0
0
0
1
…
0
⋮
⋮
⋮
⋱
⋮
0
0
0
…
1
0
0
0
…
0
]
.
{\displaystyle S={\begin{bmatrix}0&1&0&\ldots &0\\0&0&1&\ldots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \\0&0&0&\ldots &1\\0&0&0&\ldots &0\end{bmatrix}}.}
This matrix has 1s along the superdiagonal and 0s everywhere else. As a linear transformation, the shift matrix "shifts" the components of a vector one position to the left, with a zero appearing in the last position:
S
(
x
1
,
x
2
,
…
,
x
n
)
=
(
x
2
,
…
,
x
n
,
0
)
.
{\displaystyle S(x_{1},x_{2},\ldots ,x_{n})=(x_{2},\ldots ,x_{n},0).}
[6]
This matrix is nilpotent with degree
n
{\displaystyle n}
, and is the canonical nilpotent matrix.
Specifically, if
N
{\displaystyle N}
is any nilpotent matrix, then
N
{\displaystyle N}
is similar to a block diagonal matrix of the form
[
S
1
0
…
0
0
S
2
…
0
⋮
⋮
⋱
⋮
0
0
…
S
r
]
{\displaystyle {\begin{bmatrix}S_{1}&0&\ldots &0\\0&S_{2}&\ldots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\ldots &S_{r}\end{bmatrix}}}
where each of the blocks
S
1
,
S
2
,
…
,
S
r
{\displaystyle S_{1},S_{2},\ldots ,S_{r}}
is a shift matrix (possibly of different sizes). This form is a special case of the Jordan canonical form for matrices.[7]
For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix
[
0
1
0
0
]
.
{\displaystyle {\begin{bmatrix}0&1\\0&0\end{bmatrix}}.}
That is, if
N
{\displaystyle N}
is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b 1 , b 2 such that N b 1 = 0 and N b 2 = b 1 .
This classification theorem holds for matrices over any field . (It is not necessary for the field to be algebraically closed.)
Flag of subspaces [ ]
A nilpotent transformation
L
{\displaystyle L}
on
R
n
{\displaystyle \mathbb {R} ^{n}}
naturally determines a flag of subspaces
{
0
}
⊂
ker
L
⊂
ker
L
2
⊂
…
⊂
ker
L
q
−
1
⊂
ker
L
q
=
R
n
{\displaystyle \{0\}\subset \ker L\subset \ker L^{2}\subset \ldots \subset \ker L^{q-1}\subset \ker L^{q}=\mathbb {R} ^{n}}
and a signature
0
=
n
0
<
n
1
<
n
2
<
…
<
n
q
−
1
<
n
q
=
n
,
n
i
=
dim
ker
L
i
.
{\displaystyle 0=n_{0}<n_{1}<n_{2}<\ldots <n_{q-1}<n_{q}=n,\qquad n_{i}=\dim \ker L^{i}.}
The signature characterizes
L
{\displaystyle L}
up to an invertible linear transformation . Furthermore, it satisfies the inequalities
n
j
+
1
−
n
j
≤
n
j
−
n
j
−
1
,
for all
j
=
1
,
…
,
q
−
1.
{\displaystyle n_{j+1}-n_{j}\leq n_{j}-n_{j-1},\qquad {\mbox{for all }}j=1,\ldots ,q-1.}
Conversely, any sequence of natural numbers satisfying these inequalities is the signature of a nilpotent transformation.
Additional properties [ ]
If
N
{\displaystyle N}
is nilpotent, then
I
+
N
{\displaystyle I+N}
and
I
−
N
{\displaystyle I-N}
are invertible , where
I
{\displaystyle I}
is the
n
×
n
{\displaystyle n\times n}
identity matrix . The inverses are given by
(
I
+
N
)
−
1
=
∑
m
=
0
∞
(
−
N
)
m
=
I
−
N
+
N
2
−
N
3
+
N
4
−
N
5
+
N
6
−
N
7
+
⋯
,
(
I
−
N
)
−
1
=
∑
m
=
0
∞
N
m
=
I
+
N
+
N
2
+
N
3
+
N
4
+
N
5
+
N
6
+
N
7
+
⋯
{\displaystyle {\begin{aligned}(I+N)^{-1}&=\displaystyle \sum _{m=0}^{\infty }\left(-N\right)^{m}=I-N+N^{2}-N^{3}+N^{4}-N^{5}+N^{6}-N^{7}+\cdots ,\\(I-N)^{-1}&=\displaystyle \sum _{m=0}^{\infty }N^{m}=I+N+N^{2}+N^{3}+N^{4}+N^{5}+N^{6}+N^{7}+\cdots \\\end{aligned}}}
As long as
N
{\displaystyle N}
is nilpotent, both sums converge, as only finitely many terms are nonzero. If
N
{\displaystyle N}
is nilpotent, then
det
(
I
+
N
)
=
1
,
{\displaystyle \det(I+N)=1,\!\,}
where
I
{\displaystyle I}
denotes the
n
×
n
{\displaystyle n\times n}
identity matrix. Conversely, if
A
{\displaystyle A}
is a matrix and
det
(
I
+
t
A
)
=
1
{\displaystyle \det(I+tA)=1\!\,}
for all values of
t
{\displaystyle t}
, then
A
{\displaystyle A}
is nilpotent. In fact, since
p
(
t
)
=
det
(
I
+
t
A
)
−
1
{\displaystyle p(t)=\det(I+tA)-1}
is a polynomial of degree
n
{\displaystyle n}
, it suffices to have this hold for
n
+
1
{\displaystyle n+1}
distinct values of
t
{\displaystyle t}
. Every singular matrix can be written as a product of nilpotent matrices.[8] A nilpotent matrix is a special case of a convergent matrix .
Generalizations [ ]
A linear operator
T
{\displaystyle T}
is locally nilpotent if for every vector
v
{\displaystyle v}
, there exists a
k
∈
N
{\displaystyle k\in \mathbb {N} }
such that
T
k
(
v
)
=
0.
{\displaystyle T^{k}(v)=0.\!\,}
For operators on a finite-dimensional vector space, local nilpotence is equivalent to nilpotence.
Notes [ ]
^ Herstein (1975 , p. 294)
^ Beauregard & Fraleigh (1973 , p. 312)
^ Herstein (1975 , p. 268)
^ Nering (1970 , p. 274)
^ Mercer, Idris D. (31 October 2005). "Finding "nonobvious" nilpotent matrices" (PDF) . math.sfu.ca . self-published; personal credentials: PhD Mathematics, Simon Fraser University . Retrieved 22 August 2020 .
^ Beauregard & Fraleigh (1973 , p. 312)
^ Beauregard & Fraleigh (1973 , pp. 312, 313)
^ R. Sullivan, Products of nilpotent matrices, Linear and Multilinear Algebra , Vol. 56, No. 3
References [ ]
Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields , Boston: Houghton Mifflin Co. , ISBN 0-395-14017-X
Herstein, I. N. (1975), Topics In Algebra (2nd ed.), John Wiley & Sons
Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley , LCCN 76091646
External links [ ]
Explicitly constrained entries Constant Conditions on eigenvalues or eigenvectors Satisfying conditions on products or inverses With specific applications Used in statistics Used in graph theory Used in science and engineering Related terms
List of matrices
Category:Matrices