Omnitruncated simplectic honeycomb

From Wikipedia, the free encyclopedia

In geometry an omnitruncated simplectic honeycomb or omnitruncated n-simplex honeycomb is an n-dimensional uniform tessellation, based on the symmetry of the affine Coxeter group. Each is composed of omnitruncated simplex facets. The vertex figure for each is an irregular n-simplex.

The facets of an omnitruncated simplectic honeycomb are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).

n Image Tessellation Facets Vertex figure Facets per vertex figure Vertices per vertex figure
1 Uniform apeirogon.png Apeirogon
CDel node 1.pngCDel infin.pngCDel node 1.png
Line segment Line segment 1 2
2 Uniform tiling 333-t012.png Hexagonal tiling
CDel node 1.pngCDel split1.pngCDel branch 11.png
2-simplex t01.svg
hexagon
Equilateral triangle
Hexagonal tiling vertfig.png
3 hexagons 3
3 Bitruncated cubic honeycomb2.png Bitruncated cubic honeycomb
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png
3-cube t12 B2.svg
Truncated octahedron
irr. tetrahedron
Omnitruncated 3-simplex honeycomb verf.png
4 truncated octahedron 4
4 Omnitruncated 4-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png
4-simplex t0123.svg
Omnitruncated 4-simplex
irr. 5-cell
Omnitruncated 4-simplex honeycomb verf.png
5 omnitruncated 4-simplex 5
5 Omnitruncated 5-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png
5-simplex t01234.svg
Omnitruncated 5-simplex
irr. 5-simplex
Omnitruncated 5-simplex honeycomb verf.png
6 omnitruncated 5-simplex 6
6 Omnitruncated 6-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png
6-simplex t012345.svg
Omnitruncated 6-simplex
irr. 6-simplex
Omnitruncated 6-simplex honeycomb verf.png
7 omnitruncated 6-simplex 7
7 Omnitruncated 7-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png
7-simplex t0123456.svg
Omnitruncated 7-simplex
irr. 7-simplex
Omnitruncated 7-simplex honeycomb verf.png
8 omnitruncated 7-simplex 8
8 Omnitruncated 8-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png
8-simplex t01234567 A7.svg
Omnitruncated 8-simplex
irr. 8-simplex
Omnitruncated 8-simplex honeycomb verf.png
9 omnitruncated 8-simplex 9

Projection by folding[]

The (2n-1)-simplex honeycombs can be projected into the n-dimensional omnitruncated hypercubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png ...
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png ...

See also[]

References[]

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
Retrieved from ""