Solar eclipse of May 31, 2003

From Wikipedia, the free encyclopedia
Solar eclipse of May 31, 2003
Annular 2003-05-31 Culloden.png
Annular from Culloden, Scotland
SE2003May31A.png
Map
Type of eclipse
NatureAnnular
Gamma0.996
Magnitude0.9384
Maximum eclipse
Duration217 sec (3 m 37 s)
Coordinates66°36′N 24°30′W / 66.6°N 24.5°W / 66.6; -24.5
Max. width of band- km
Times (UTC)
Greatest eclipse4:09:22
References
Saros147 (22 of 80)
Catalog # (SE5000)9515

An annular solar eclipse occurred at the Moon's ascending node of the orbit on May 31, 2003. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible across central Greenland, the Faroe Islands, Iceland, Jan Mayen and northern Scotland. Partiality was visible throughout Europe, Asia, and far northwestern Canada.

Animation

Images[]

Related eclipses[]

Eclipses of 2003[]

Tzolkinex[]

  • Followed: Solar eclipse of July 11, 2010

Half-Saros[]

  • Preceded: Lunar eclipse of May 25, 1994

Tritos[]

  • Followed: Solar eclipse of April 29, 2014

Solar Saros 147[]

  • Preceded: Solar eclipse of May 19, 1985
  • Followed: Solar eclipse of June 10, 2021

Inex[]

  • Preceded: Solar eclipse of June 20, 1974
  • Followed: Solar eclipse of May 9, 2032

Solar eclipses 2000–2003[]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Note: Partial solar eclipses on February 5, 2000 and July 31, 2000 occur in the previous lunar year set.

Solar eclipse series sets from 2000–2003
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 2000 July 01
SE2000Jul01P.png
Partial (south)
-1.28214 122 2000 December 25
SE2000Dec25P.png
Partial (north)
1.13669
127
Williams College wl.jpg
Totality from Lusaka, Zambia
2001 June 21
SE2001Jun21T.png
Total
-0.57013 132
Partial solar eclipse December 14 2001 Minneapolis.jpg
Partial from Minneapolis, MN
2001 December 14
SE2001Dec14A.png
Annular
0.40885
137
Gregmote - 20020610 002 (by).jpg
Partial from Los Angeles, CA
2002 June 10
SE2002Jun10A.png
Annular
0.19933 142
Eclipse 4-12-2002 Woomera.jpg
Totality from Woomera
2002 December 04
SE2002Dec04T.png
Total
-0.30204
147
Annular 2003-05-31 Culloden.png
Culloden, Scotland
2003 May 31
SE2003May31A.png
Annular
0.99598 152 2003 November 23
SE2003Nov23T.png
Total
-0.96381

Saros 147[]

Solar saros 147, repeating every about 18 years and 11 days, contains 80 events. The series started with a partial solar eclipse on October 12, 1624. It has annular eclipses from May 31, 2003, to July 31, 2706. There are no total eclipses in this series. The series ends at member 80 as a partial eclipse on February 24, 3049. The longest annular eclipse will be on November 21, 2291, at 9 minutes and 41 seconds.[2]

Series members 17–27 occur between 1901 and 2100:
17 18 19
SE1913Apr06P.png
April 6, 1913
SE1931Apr18P.png
April 18, 1931
SE1949Apr28P.png
April 28, 1949
20 21 22
SE1967May09P.png
May 9, 1967
SE1985May19P.png
May 19, 1985
SE2003May31A.png
May 31, 2003
23 24 25
SE2021Jun10A.png
June 10, 2021
SE2039Jun21A.png
June 21, 2039
SE2057Jul01A.png
July 1, 2057
26 27
SE2075Jul13A.png
July 13, 2075
SE2093Jul23A.png
July 23, 2093

Tritos series[]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series[]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between January 5, 1935 and August 11, 2018
January 4-5 October 23-24 August 10-12 May 30-31 March 18-19
111 113 115 117 119
SE1935Jan05P.png
January 5, 1935
SE1942Aug12P.png
August 12, 1942
SE1946May30P.png
May 30, 1946
SE1950Mar18A.png
March 18, 1950
121 123 125 127 129
SE1954Jan05A.png
January 5, 1954
SE1957Oct23T.png
October 23, 1957
SE1961Aug11A.png
August 11, 1961
SE1965May30T.png
May 30, 1965
SE1969Mar18A.png
March 18, 1969
131 133 135 137 139
SE1973Jan04A.png
January 4, 1973
SE1976Oct23T.png
October 23, 1976
SE1980Aug10A.png
August 10, 1980
SE1984May30A.png
May 30, 1984
SE1988Mar18T.png
March 18, 1988
141 143 145 147 149
SE1992Jan04A.png
January 4, 1992
SE1995Oct24T.png
October 24, 1995
SE1999Aug11T.png
August 11, 1999
SE2003May31A.png
May 31, 2003
SE2007Mar19P.png
March 19, 2007
151 153 155
SE2011Jan04P.png
January 4, 2011
SE2014Oct23P.png
October 23, 2014
SE2018Aug11P.png
August 11, 2018

See also[]

Notes[]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.

References[]

Photos:

Retrieved from ""