Solar eclipse of December 5, 2048

From Wikipedia, the free encyclopedia
Solar eclipse of December 5, 2048
SE2048Dec05T.png
Map
Type of eclipse
NatureTotal
Gamma-0.3973
Magnitude1.044
Maximum eclipse
Duration208 sec (3 m 28 s)
Coordinates46°06′S 56°24′W / 46.1°S 56.4°W / -46.1; -56.4
Max. width of band160 km (99 mi)
Times (UTC)
Greatest eclipse15:35:27
References
Saros133 (47 of 72)
Catalog # (SE5000)9616

A total solar eclipse will occur on December 5, 2048. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Animated Path

Related eclipses[]

Solar eclipses of 2047–2050[]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Note: Partial lunar eclipses on January 26, 2047 and July 22, 2047 occur on the previous lunar year eclipse set.

Solar eclipse sets from 2047–2050
Descending node   Ascending node
118 June 23, 2047
SE2047Jun23P.png
Partial
123 December 16, 2047
SE2047Dec16P.png
Partial
128 June 11, 2048
SE2048Jun11A.png
Annular
133 December 5, 2048
SE2048Dec05T.png
Total
138 May 31, 2049
SE2049May31A.png
Annular
143 November 25, 2049
SE2049Nov25H.png
Hybrid
148 May 20, 2050
SE2050May20H.png
Hybrid
153 November 14, 2050
SE2050Nov14P.png
Partial

Saros 133[]

Solar Saros 133, repeating every 18 years, 11 days, contains 72 events. The series started with a partial solar eclipse on July 13, 1219. It contains annular eclipses from November 20, 1435, through January 13, 1526, with a hybrid eclipse on January 24, 1544. It has total eclipses from February 3, 1562, through June 21, 2373. The series ends at member 72 as a partial eclipse on September 5, 2499. The longest duration of totality was 6 minutes, 49.97 seconds on August 7, 1850.[2] The total eclipses of this saros series are getting shorter and farther south with each iteration. All eclipses in this series occurs at the Moon’s ascending node.

Series members 30–56 occur between 1742 and 2211
30 31 32
SE1778Jun24T.png
June 24, 1778
33 34 35
36 37 38
SE1868Aug18T.png
August 18, 1868
SE1886Aug29T.png
August 29, 1886
39 40 41
SE1904Sep09T.png
September 9, 1904
SE1922Sep21T.png
September 21, 1922
SE1940Oct01T.png
October 1, 1940
42 43 44
SE1958Oct12T.png
October 12, 1958
SE1976Oct23T.png
October 23, 1976
SE1994Nov03T.png
November 3, 1994
45 46 47
SE2012Nov13T.png
November 13, 2012
SE2030Nov25T.png
November 25, 2030
SE2048Dec05T.png
December 5, 2048
48 49 50
SE2066Dec17T.png
December 17, 2066
SE2084Dec27T.png
December 27, 2084
SE2103Jan08T.png
January 8, 2103
51 52 53
SE2121Jan19T.png
January 19, 2121
SE2139Jan30T.png
January 30, 2139
SE2157Feb09T.png
February 9, 2157
54 55 56
SE2175Feb21T.png
February 21, 2175
SE2193Mar03T.png
March 3, 2193
SE2211Mar15T.png
March 15, 2211

Metonic series[]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

References[]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ http://eclipse.gsfc.nasa.gov/SEsaros/SEsaros133.html

External links[]

Retrieved from ""