Solar eclipse of November 3, 2013

From Wikipedia, the free encyclopedia
Solar eclipse of November 3, 2013
2013 Solar Eclipse Libreville.JPG
Partial from Libreville, Gabon
SE2013Nov03H.png
Map
Type of eclipse
NatureHybrid
Gamma0.3272
Magnitude1.0159
Maximum eclipse
Duration100 sec (1 m 40 s)
Coordinates3°30′N 11°42′W / 3.5°N 11.7°W / 3.5; -11.7
Max. width of band58 km (36 mi)
Times (UTC)
(P1) Partial begin10:04:34
(U1) Total begin11:05:17
Greatest eclipse12:47:36
(U4) Total end14:27:42
(P4) Partial end15:28:21
References
Saros143 (23 of 72)
Catalog # (SE5000)9538

A total solar eclipse occurred at the Moon's ascending node on 3 November 2013. It was a hybrid eclipse of the Sun with a magnitude of 1.0159, with a small portion over the western Atlantic Ocean at sunrise as an annular eclipse, and the rest of the path as a narrow total solar eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A hybrid solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's in sunrise and sunset, but at Greatest Eclipse the Moon's apparent diameter is larger than the Sun's.

In this particular case the eclipse path starts out as annular. Further down the track it changes to total and then back to annular before the path ends.

It was the 23rd eclipse of the 143rd Saros cycle, which began with a partial eclipse on March 7, 1617, and will conclude with a partial eclipse on April 23, 2897.

This hybrid solar eclipse started annular solar eclipse and ended total solar eclipse.

Viewing[]

Totality was visible from the northern Atlantic Ocean (east of Florida) to Africa (Gabon (landfall), R. Congo, DR Congo, Uganda, South Sudan, Kenya, Ethiopia, Somalia), with a maximum duration of totality of 1 minute and 39 seconds, visible from the Atlantic Ocean south of Ivory Coast and Ghana.[1]

Places with partial darkening were the Eastern coast of North America, southern Greenland, Bermuda, the Caribbean islands, Costa Rica, Panama, Northern South America, almost all the African continent, the Iberian Peninsula, Italy, Greece, Malta, Southern Russia, the Caucasus, Turkey and the Middle East.

This solar eclipse happened simultaneously with the 2013 Abu Dhabi Grand Prix, and it was possible to observe a partial solar eclipse in Abu Dhabi before the sunset while the F1 race took place, as shown briefly during its broadcast.[2]

From space[]

Simulated shadow path

Photo gallery[]

Related eclipses[]

Eclipses of 2013[]

  • A partial lunar eclipse on April 25.
  • An annular solar eclipse on May 10.
  • A penumbral lunar eclipse on May 25.
  • A penumbral lunar eclipse on October 18.
  • A hybrid solar eclipse on November 3.

Solar eclipses 2011–2014[]

This eclipse is a member of the 2011–2014 solar eclipse semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3][Note 1]

Solar eclipse series sets from 2011–2014
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118
Partial solar eclipse Tromsø 2011-05-31 (cropped).jpg
Partial from Tromsø, Norway
2011 June 01
SE2011Jun01P.png
Partial (north)
1.2130 123 2011 November 25
SE2011Nov25P.png
Partial (south)
-1.0536
128
Annular Eclipse. Taken from Middlegate, Nevada on May 20, 2012.jpg
Middlegate, Nevada
2012 May 20
SE2012May20A.png
Annular
0.4828 133
Total Solar Eclipse in Cairns, Australia (23689065446).jpg
Cairns, Australia
2012 November 13
SE2012Nov13T.png
Total
-0.3719
138
Annular Solar Eclipse May 10 2013 Northern Territory Australia.JPG
Churchills Head, Australia
2013 May 10
SE2013May10A.png
Annular
-0.2693 143
2013 Solar Eclipse Libreville.JPG
Partial from Libreville, Gabon
2013 November 03
SE2013Nov03H.png
Hybrid
0.3271
148
Partial Solar Eclipse April 29th 2014 (13898733668) cropped.jpg
Partial from Adelaide, Australia
2014 April 29
SE2014Apr29A.png
Annular (non-central)
-0.9999 153
Partial solar eclipse Oct 23 2014 Minneapolis 5-36pm Ruen1.png
Partial from Minneapolis
2014 October 23
SE2014Oct23P.png
Partial (north)
1.0908

Saros 143[]

It is a part of Saros cycle 143, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on March 7, 1617 and total event from June 24, 1797 through October 24, 1995. It has hybrid eclipses from November 3, 2013 through December 6, 2067, and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2873. The longest duration of totality was 3 minutes, 50 seconds on August 19, 1887. All eclipses in this series occurs at the Moon’s ascending node.

Series members 17–28 occur between 1741 and 2100
8 9 10
SE1743May23P.png
May 23, 1743
SE1761Jun03P.png
June 3, 1761
SE1779Jun14P.png
June 14, 1779
11 12 13
SE1797Jun24T.png
June 24, 1797
SE1815Jul06T.png
July 6, 1815
SE1833Jul17T.png
July 17, 1833
14 15 16
SE1851Jul28T.png
July 28, 1851
SE1869Aug07T.png
August 7, 1869
SE1887Aug19T.png
August 19, 1887
17 18 19
SE1905Aug30T.png
August 30, 1905
SE1923Sep10T.png
September 10, 1923
SE1941Sep21T.png
September 21, 1941
20 21 22
SE1959Oct02T.png
October 2, 1959
SE1977Oct12T.png
October 12, 1977
SE1995Oct24T.png
October 24, 1995
23 24 25
SE2013Nov03H.png
November 3, 2013
SE2031Nov14H.png
November 14, 2031
SE2049Nov25H.png
November 25, 2049
26 27 28
SE2067Dec06H.png
December 6, 2067
SE2085Dec16A.png
December 16, 2085

Inex series[]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Tritos series[]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series[]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between June 10, 1964, and August 21, 2036
June 10–11 March 27–29 January 15–16 November 3 August 21–22
117 119 121 123 125
SE1964Jun10P.png
June 10, 1964
SE1968Mar28P.png
March 28, 1968
SE1972Jan16A.png
January 16, 1972
SE1975Nov03P.png
November 3, 1975
SE1979Aug22A.png
August 22, 1979
127 129 131 133 135
SE1983Jun11T.png
June 11, 1983
SE1987Mar29H.png
March 29, 1987
SE1991Jan15A.png
January 15, 1991
SE1994Nov03T.png
November 3, 1994
SE1998Aug22A.png
August 22, 1998
137 139 141 143 145
SE2002Jun10A.png
June 10, 2002
SE2006Mar29T.png
March 29, 2006
SE2010Jan15A.png
January 15, 2010
SE2013Nov03H.png
November 3, 2013
SE2017Aug21T.png
August 21, 2017
147 149 151 153 155
SE2021Jun10A.png
June 10, 2021
SE2025Mar29P.png
March 29, 2025
SE2029Jan14P.png
January 14, 2029
SE2032Nov03P.png
November 3, 2032
SE2036Aug21P.png
August 21, 2036

Notes[]

  1. ^ The partial solar eclipses of January 4, 2011 and July 1, 2011 occurred in the previous semester series.

References[]

  1. ^ Hybrid Solar Eclipse of 2013 Nov 03 NASA
  2. ^ "Rare 'hybrid' eclipse sweeps across the globe plunging parts of Europe, Africa and US into darkness". Belfast Telegraph. November 3, 2013. Retrieved November 4, 2013.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

External links[]

Retrieved from ""