Timeline of quantum computing and communication

From Wikipedia, the free encyclopedia

This is a timeline of quantum computing.

1960s[]

1968[]

1970s[]

1970[]

  • James Park articulates the no-cloning theorem.[2]

1973[]

  • Alexander Holevo publishes a paper showing that n qubits can carry more than n classical bits of information, but at most n classical bits are accessible (a result known as "Holevo's theorem" or "Holevo's bound").
  • Charles H. Bennett shows that computation can be done reversibly.[3]

1975[]

  • R. P. Poplavskii publishes "Thermodynamical models of information processing" (in Russian)[4] which showed the computational infeasibility of simulating quantum systems on classical computers, due to the superposition principle.

1976[]

  • Polish mathematical physicist Roman Stanisław Ingarden publishes a seminal paper entitled "Quantum Information Theory" in Reports on Mathematical Physics, vol. 10, 43–72, 1976. (The paper was submitted in 1975.) It is one of the first attempts at creating a quantum information theory, showing that Shannon information theory cannot directly be generalized to the quantum case, but rather that it is possible to construct a quantum information theory, which is a generalization of Shannon's theory, within the formalism of a generalized quantum mechanics of open systems and a generalized concept of observables (the so-called semi-observables).

1980s[]

1980[]

  • Paul Benioff describes the first quantum mechanical model of a computer. In this work, Benioff showed that a computer could operate under the laws of quantum mechanics by describing a Schrödinger equation description of Turing machines, laying a foundation for further work in quantum computing. The paper[5] was submitted in June 1979 and published in April 1980.
  • Yuri Manin briefly motivates the idea of quantum computing.[6]
  • Tommaso Toffoli introduces the reversible Toffoli gate,[7] which, together with the NOT and XOR gates provides a universal set for reversible classical computation.

1981[]

  • At the First Conference on the Physics of Computation, held at MIT in May, Paul Benioff and Richard Feynman give talks on quantum computing. Benioff's built on his earlier 1980 work showing that a computer can operate under the laws of quantum mechanics. The talk was titled “Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: application to Turing machines”.[8] In Feynman's talk, he observed that it appeared to be impossible to efficiently simulate an evolution of a quantum system on a classical computer, and he proposed a basic model for a quantum computer.[9]

1982[]

  • Paul Benioff further develops his original model of a quantum mechanical Turing machine.[10]
  • William Wootters and Wojciech Zurek,[11] and independently Dennis Dieks[12] rediscover the no-cloning theorem.

1984[]

  • Charles Bennett and Gilles Brassard employ Wiesner's conjugate coding for distribution of cryptographic keys.[13]

1985[]

  • David Deutsch, at the University of Oxford, describes the first universal quantum computer. Just as a Universal Turing machine can simulate any other Turing machine efficiently (Church-Turing thesis), so the universal quantum computer is able to simulate any other quantum computer with at most a polynomial slowdown.
  • Asher Peres points out need for quantum error correction schemes and discusses a repetition code for amplitude errors.[14]

1988[]

  • Yoshihisa Yamamoto and K. Igeta propose the first physical realization of a quantum computer, including Feynman's CNOT gate.[15] Their approach uses atoms and photons and is the progenitor of modern quantum computing and networking protocols using photons to transmit qubits and atoms to perform two-qubit operations.

1989[]

  • Gerard J. Milburn proposes a quantum-optical realization of a Fredkin gate.[16]
  • Bikas K. Chakrabarti & collaborators from Saha Institute of Nuclear Physics, Kolkata, propose the idea that quantum fluctuations could help explore rugged energy landscapes by escaping from local minima of glassy systems having tall but thin barriers by tunneling (instead of climbing over using thermal excitations), suggesting the effectiveness of quantum annealing over classical simulated annealing.[17][18]

1990s[]

1991[]

  • Artur Ekert at the University of Oxford, proposes entanglement-based secure communication.[19]

1992[]

  • David Deutsch and Richard Jozsa propose a computational problem that can be solved efficiently with the determinist Deutsch–Jozsa algorithm on a quantum computer, but for which no deterministic classical algorithm is possible. This was perhaps the earliest result in the computational complexity of quantum computers, proving that they were capable of performing some well-defined computational task more efficiently than any classical computer.

1993[]

1994[]

  • Peter Shor, at AT&T's Bell Labs in New Jersey, discovers an important algorithm. It allows a quantum computer to factor large integers quickly. It solves both the factoring problem and the discrete log problem. Shor's algorithm can theoretically break many of the cryptosystems in use today. Its invention sparked a tremendous interest in quantum computers.
  • First United States Government workshop on quantum computing is organized by NIST in Gaithersburg, Maryland, in autumn.
  • Isaac Chuang and Yoshihisa Yamamoto propose a quantum-optical realization of a quantum computer to implement Deutsch's algorithm.[20] Their work introduces dual-rail encoding for photonic qubits.
  • In December, Ignacio Cirac, at University of Castilla-La Mancha at Ciudad Real, and Peter Zoller at the University of Innsbruck propose an experimental realization of the controlled-NOT gate with cold trapped ions.

1995[]

  • The first United States Department of Defense workshop on quantum computing and quantum cryptography is organized by United States Army physicists Charles M. Bowden, Jonathan P. Dowling, and ; it takes place in February at the University of Arizona in Tucson.
  • Peter Shor proposes the first schemes for quantum error correction.[21]
  • Christopher Monroe and David Wineland at NIST (Boulder, Colorado) experimentally realize the first quantum logic gate – the controlled-NOT gate – with trapped ions, following the Cirac-Zoller proposal.[22]

1996[]

  • Lov Grover, at Bell Labs, invents the quantum database search algorithm. The quadratic speedup is not as dramatic as the speedup for factoring, discrete logs, or physics simulations. However, the algorithm can be applied to a much wider variety of problems. Any problem that has to be solved by random, brute-force search, can take advantage of this quadratic speedup (in the number of search queries).
  • The United States Government, particularly in a joint partnership of the Army Research Office (now part of the Army Research Laboratory) and the National Security Agency, issues the first public call for research proposals in quantum information processing.
  • Andrew Steane designs Steane codes for error correction.[23]
  • David P. DiVincenzo, from IBM, proposes a list of minimal requirements for creating a quantum computer.[24]

1997[]

  • David Cory, Amr Fahmy and , and at the same time Neil Gershenfeld and Isaac L. Chuang at MIT publish the first papers realizing gates for quantum computers based on bulk nuclear spin resonance, or thermal ensembles. The technology is based on a nuclear magnetic resonance (NMR) machine, which is similar to the medical magnetic resonance imaging machine.
  • Alexei Kitaev describes the principles of topological quantum computation as a method for combating decoherence.[25]
  • Daniel Loss and David P. DiVincenzo propose the Loss-DiVincenzo quantum computer, using as qubits the intrinsic spin-1/2 degree of freedom of individual electrons confined to quantum dots.[26]

1998[]

  • First experimental demonstration of a quantum algorithm. A working 2-qubit NMR quantum computer is used to solve Deutsch's problem by Jonathan A. Jones and Michele Mosca at Oxford University and shortly after by Isaac L. Chuang at IBM's Almaden Research Center and Mark Kubinec and the University of California, Berkeley together with coworkers at Stanford University and MIT.[27]
  • First working 3-qubit NMR computer.
  • Bruce Kane proposes a silicon based nuclear spin quantum computer, using nuclear spins of individual phosphorus atoms in silicon as the qubits and donor electrons to mediate the coupling between qubits.[28]
  • First execution of Grover's algorithm on an NMR computer.
  • Hidetoshi Nishimori & colleagues from Tokyo Institute of Technology showed that quantum annealing algorithm can perform better than classical simulated annealing.
  • Daniel Gottesman and Emanuel Knill independently prove that a certain subclass of quantum computations can be efficiently emulated with classical resources (Gottesman–Knill theorem).[29]

1999[]

  • Samuel L. Braunstein and collaborators show that none of the bulk NMR experiments performed to date contained any entanglement, the quantum states being too strongly mixed. This is seen as evidence that NMR computers would likely not yield a benefit over classical computers. It remains an open question, however, whether entanglement is necessary for quantum computational speedup.[30]
  • Gabriel Aeppli, Thomas Felix Rosenbaum and colleagues demonstrate experimentally the basic concepts of quantum annealing in a condensed matter system.
  • Yasunobu Nakamura and Jaw-Shen Tsai demonstrate that a superconducting circuit can be used as a qubit.[31]

2000s[]

2000[]

  • Arun K. Pati and Samuel L. Braunstein proved the quantum no-deleting theorem. This is dual to the no-cloning theorem which shows that one cannot delete a copy of an unknown qubit. Together with the stronger no-cloning theorem, the no-deleting theorem has important implication, i.e., quantum information can neither be created nor be destroyed.
  • First working 5-qubit NMR computer demonstrated at the Technical University of Munich.
  • First execution of order finding (part of Shor's algorithm) at IBM's Almaden Research Center and Stanford University.
  • First working 7-qubit NMR computer demonstrated at the Los Alamos National Laboratory.
  • The standard textbook, Quantum Computation and Quantum Information, by Michael Nielsen and Isaac Chuang is published.

2001[]

  • First execution of Shor's algorithm at IBM's Almaden Research Center and Stanford University. The number 15 was factored using 1018 identical molecules, each containing seven active nuclear spins.
  • and Sandu Popescu proved that the presence of entanglement is a necessary condition for a large class of quantum protocols. This, coupled with Braunstein's result (see 1999 above), called the validity of NMR quantum computation into question.[32]
  • Emanuel Knill, Raymond Laflamme, and Gerard Milburn show that optical quantum computing is possible with single photon sources, linear optical elements, and single photon detectors, launching the field of linear optical quantum computing.
  • Robert Raussendorf and Hans Jürgen Briegel propose measurement-based quantum computation.[33]

2002[]

  • The Quantum Information Science and Technology Roadmapping Project, involving some of the main participants in the field, laid out the Quantum computation roadmap.

2003[]

  • Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer at the University of Innsbruck[35]
  • and collaborators at Johns Hopkins University, Applied Physics Laboratory and independently Jeremy L. O'Brien and collaborators at the University of Queensland, demonstrate quantum controlled-not gates using only linear optical elements.[36][37]
  • First implementation of a CNOT quantum gate according to the Cirac–Zoller proposal by a group at the University of Innsbruck led by Rainer Blatt.[38]
  • DARPA Quantum Network becomes fully operational on October 23, 2003.
  • The Institute for Quantum Optics and Quantum Information (IQOQI) was established in Innsbruck and Vienna, Austria, by the founding directors Rainer Blatt, Hans Jürgen Briegel, Rudolf Grimm, Anton Zeilinger and Peter Zoller.

2004[]

  • First working pure state NMR quantum computer (based on parahydrogen) demonstrated at Oxford University and University of York.
  • Physicists at the University of Innsbruck show deterministic quantum-state teleportation between a pair of trapped calcium ions.[39]
  • First five-photon entanglement demonstrated by Jian-Wei Pan's group at the University of Science and Technology of China, the minimal number of qubits required for universal quantum error correction.[40]

2005[]

  • University of Illinois at Urbana–Champaign scientists demonstrate quantum entanglement of multiple characteristics, potentially allowing multiple qubits per particle.
  • Two teams of physicists measured the capacitance of a Josephson junction for the first time. The methods could be used to measure the state of quantum bits in a quantum computer without disturbing the state.[41]
  • In December, the first quantum byte, or qubyte, is announced to have been created by scientists at the Institute for Quantum Optics and Quantum Information and the University of Innsbruck in Austria.[42]
  • Harvard University and Georgia Institute of Technology researchers succeeded in transferring quantum information between "quantum memories" – from atoms to photons and back again.

2006[]

  • Materials Science Department of Oxford University, cage a qubit in a "buckyball" (a molecule of buckminsterfullerene), and demonstrated quantum "bang-bang" error correction.[43]
  • Researchers from the University of Illinois at Urbana–Champaign use the Zeno Effect, repeatedly measuring the properties of a photon to gradually change it without actually allowing the photon to reach the program, to search a database without actually "running" the quantum computer.[44]
  • Vlatko Vedral of the University of Leeds and colleagues at the universities of Porto and Vienna found that the photons in ordinary laser light can be quantum mechanically entangled with the vibrations of a macroscopic mirror.[45]
  • Samuel L. Braunstein at the University of York along with the University of Tokyo and the Japan Science and Technology Agency gave the first experimental demonstration of quantum telecloning.[46]
  • Professors at the University of Sheffield develop a means to efficiently produce and manipulate individual photons at high efficiency at room temperature.[47]
  • New error checking method theorized for Josephson junction computers.[48]
  • First 12 qubit quantum computer benchmarked by researchers at the Institute for Quantum Computing and the Perimeter Institute for Theoretical Physics in Waterloo, as well as MIT, Cambridge.[49]
  • Two dimensional ion trap developed for quantum computing.[50]
  • Seven atoms placed in stable line, a step on the way to constructing a quantum gate, at the University of Bonn.[51]
  • A team at Delft University of Technology in the Netherlands created a device that can manipulate the "up" or "down" spin-states of electrons on quantum dots.[52]
  • University of Arkansas develops quantum dot molecules.[53]
  • Spinning new theory on particle spin brings science closer to quantum computing.[54]
  • University of Copenhagen develops quantum teleportation between photons and atoms.[55]
  • University of Camerino scientists develop theory of macroscopic object entanglement, which has implications for the development of .[56]
  • Tai-Chang Chiang, at Illinois at Urbana–Champaign, finds that quantum coherence can be maintained in mixed-material systems.[57]
  • Cristophe Boehme, University of Utah, demonstrates the feasibility of reading spin-data on a .[58]

2007[]

  • Subwavelength waveguide developed for light.[59]
  • Single photon emitter for optical fibers developed.[60]
  • Six-photon one-way quantum computer is created in lab.[61]
  • New material proposed for quantum computing.[62]
  • Single atom single photon server devised.[63]
  • First use of Deutsch's Algorithm in a cluster state quantum computer.[64]
  • University of Cambridge develops electron quantum pump.[65]
  • Superior method of qubit coupling developed.[66]
  • Successful demonstration of controllably coupled qubits.[67]
  • Breakthrough in applying spin-based electronics to silicon.[68]
  • Scientists demonstrate quantum state exchange between light and matter.[69]
  • Diamond quantum register developed.[70]
  • Controlled-NOT quantum gates on a pair of superconducting quantum bits realized.[71]
  • Scientists contain, study hundreds of individual atoms in 3D array.[72]
  • Nitrogen in buckyball molecule used in quantum computing.[73]
  • Large number of electrons quantum coupled.[74]
  • Spin-orbit interaction of electrons measured.[75]
  • Atoms quantum manipulated in laser light.[76]
  • Light pulses used to control electron spins.[77]
  • Quantum effects demonstrated across tens of nanometers.[78]
  • Light pulses used to accelerate quantum computing development.[79]
  • Quantum RAM blueprint unveiled.[80]
  • Model of quantum transistor developed.[81]
  • Long distance entanglement demonstrated.[82]
  • Photonic quantum computing used to factor number by two independent labs.[83]
  • Quantum bus developed by two independent labs.[84]
  • Superconducting quantum cable developed.[85]
  • Transmission of qubits demonstrated.[86]
  • Superior qubit material devised.[87]
  • Single electron qubit memory.[88]
  • Bose-Einstein condensate quantum memory developed.[89]
  • D-Wave Systems demonstrates use of a 28-qubit quantum annealing computer.[90]
  • New cryonic method reduces decoherence and increases interaction distance, and thus quantum computing speed.[91]
  • Photonic quantum computer demonstrated.[92]
  • Graphene quantum dot spin qubits proposed.[93]

2008[]

  • Graphene quantum dot qubits[94]
  • Quantum bit stored[95]
  • 3D qubit-qutrit entanglement demonstrated[96]
  • Analog quantum computing devised[97]
  • Control of quantum tunneling[98]
  • Entangled memory developed[99]
  • Superior NOT gate developed[100]
  • Qutrits developed[101]
  • Quantum logic gate in optical fiber[102]
  • Superior quantum Hall Effect discovered[103]
  • Enduring spin states in quantum dots[104]
  • Molecular magnets proposed for quantum RAM[105]
  • Quasiparticles offer hope of stable quantum computer[106]
  • Image storage may have better storage of qubits[107]
  • Quantum entangled images[108]
  • Quantum state intentionally altered in molecule[109]
  • Electron position controlled in silicon circuit[110]
  • Superconducting electronic circuit pumps microwave photons[111]
  • Amplitude spectroscopy developed[112]
  • Superior quantum computer test developed[113]
  • Optical frequency comb devised[114]
  • Quantum Darwinism supported[115]
  • Hybrid qubit memory developed[116]
  • Qubit stored for over 1 second in atomic nucleus[117]
  • Faster electron spin qubit switching and reading developed[118]
  • Possible non-entanglement quantum computing[119]
  • D-Wave Systems claims to have produced a 128 qubit computer chip, though this claim has yet to be verified.[120]

2009[]

  • Carbon 12 purified for longer coherence times[121]
  • Lifetime of qubits extended to hundreds of milliseconds[122]
  • Quantum control of photons[123]
  • Quantum entanglement demonstrated over 240 micrometres[124]
  • Qubit lifetime extended by factor of 1000[125]
  • First electronic quantum processor created[126]
  • Six-photon graph state entanglement used to simulate the fractional statistics of anyons living in artificial spin-lattice models[127]
  • Single molecule optical transistor[128]
  • NIST reads, writes individual qubits[129]
  • NIST demonstrates multiple computing operations on qubits[130]
  • First large-scale topological cluster state quantum architecture developed for atom-optics[131]
  • A combination of all of the fundamental elements required to perform scalable quantum computing through the use of qubits stored in the internal states of trapped atomic ions shown[132]
  • Researchers at University of Bristol demonstrate Shor's algorithm on a silicon photonic chip[133]
  • Quantum Computing with an Electron Spin Ensemble[134]
  • Scalable flux qubit demonstrated[135]
  • Photon machine gun developed for quantum computing[136]
  • Quantum algorithm developed for differential equation systems[137]
  • First universal programmable quantum computer unveiled[138]
  • Scientists electrically control quantum states of electrons[139]
  • Google collaborates with D-Wave Systems on image search technology using quantum computing[140]
  • A method for synchronizing the properties of multiple coupled CJJ rf-SQUID flux qubits with a small spread of device parameters due to fabrication variations was demonstrated[141]
  • Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits [142]
  • First chip-scale quantum computer[143]

2010s[]

2010[]

  • Ion trapped in optical trap[144]
  • Optical quantum computer with three qubits calculated the energy spectrum of molecular hydrogen to high precision[145]
  • First germanium laser brings us closer to optical computers[146]
  • Single electron qubit developed[147]
  • Quantum state in macroscopic object[148]
  • New quantum computer cooling method developed[149]
  • Racetrack ion trap developed[150]
  • Evidence for a Moore-Read state in the quantum Hall plateau,[151] which would be suitable for topological quantum computation
  • Quantum interface between a single photon and a single atom demonstrated[152]
  • LED quantum entanglement demonstrated[153]
  • Multiplexed design speeds up transmission of quantum information through a quantum communications channel[154]
  • Two photon optical chip[155]
  • Microfabricated planar ion traps[156][157]
  • Boson sampling technique proposed by Aaronson and Arkhipov.[158]
  • Quantum dot qubits manipulated electrically, not magnetically[159]

2011[]

  • Entanglement in a solid-state spin ensemble[160]
  • NOON photons in superconducting quantum integrated circuit[161]
  • Quantum antenna[162]
  • Multimode quantum interference[163]
  • Magnetic Resonance applied to quantum computing[164]
  • Quantum pen[165]
  • Atomic "Racing Dual"[166]
  • 14 qubit register[167]
  • D-Wave claims to have developed quantum annealing and introduces their product called D-Wave One. The company claims this is the first commercially available quantum computer[168]
  • Repetitive error correction demonstrated in a quantum processor[169]
  • Diamond quantum computer memory demonstrated[170]
  • Qmodes developed[171]
  • Decoherence suppressed[172]
  • Simplification of controlled operations[173]
  • Ions entangled using microwaves[174]
  • Practical error rates achieved[175]
  • Quantum computer employing Von Neumann architecture[176]
  • Quantum spin Hall topological insulator[177]
  • Two Diamonds Linked by Quantum Entanglement could help develop photonic processors[178]

2012[]

  • D-Wave claims a quantum computation using 84 qubits.[179]
  • Physicists create a working transistor from a single atom[180][181]
  • A method for manipulating the charge of nitrogen vacancy-centres in diamond[182]
  • Reported creation of a 300 qubit/particle quantum simulator.[183][184]
  • Demonstration of topologically protected qubits with an eight-photon entanglement, a robust approach to practical quantum computing[185]
  • 1QB Information Technologies (1QBit) founded. World's first dedicated quantum computing software company.[186]
  • First design of a quantum repeater system without a need for quantum memories[187]
  • Decoherence suppressed for 2 seconds at room temperature by manipulating Carbon-13 atoms with lasers.[188][189]
  • Theory of Bell-based randomness expansion with reduced assumption of measurement independence.[190]
  • New low overhead method for fault-tolerant quantum logic developed, called lattice surgery[191]

2013[]

  • Coherence time of 39 minutes at room temperature (and 3 hours at cryogenic temperatures) demonstrated for an ensemble of impurity-spin qubits in isotopically purified silicon.[192]
  • Extension of time for qubit maintained in superimposed state for ten times longer than what has ever been achieved before[193]
  • First resource analysis of a large-scale quantum algorithm using explicit fault-tolerant, error-correction protocols was developed for factoring[194]

2014[]

  • Documents leaked by Edward Snowden confirm the ,[195] by which the National Security Agency seeks to develop a quantum computing capability for cryptography purposes.[196][197][198]
  • Researchers in Japan and Austria publish the first large-scale quantum computing architecture for a diamond based system[199]
  • Scientists at the University of Innsbruck do quantum computations on a topologically encoded qubit which is encoded in entangled states distributed over seven trapped-ion qubits[200]
  • Scientists transfer data by quantum teleportation over a distance of 10 feet (3.048 meters) with zero percent error rate, a vital step towards a quantum Internet.[201][202]

2015[]

  • Optically addressable nuclear spins in a solid with a six-hour coherence time.[203]
  • Quantum information encoded by simple electrical pulses.[204]
  • Quantum error detection code using a square lattice of four superconducting qubits.[205]
  • D-Wave Systems Inc. announced on June 22 that it had broken the 1,000-qubit barrier.[206]
  • A two-qubit silicon logic gate is successfully developed.[207]
  • A quantum computer, along with quantum superposition and entanglement, is emulated by a classical analog computer, with the result that the fully classical system behaves like a true quantum computer.[208]

2016[]

  • Physicists led by Rainer Blatt joined forces with scientists at MIT, led by Isaac Chuang, to efficiently implement Shor's algorithm in an ion-trap based quantum computer.[209]
  • IBM releases the Quantum Experience, an online interface to their superconducting systems. The system is immediately used to publish new protocols in quantum information processing[210][211]
  • Google, using an array of 9 superconducting qubits developed by the and UCSB, simulates a hydrogen molecule.[212]
  • Scientists in Japan and Australia invent the quantum version of a Sneakernet communications system[213]

2017[]

  • D-Wave Systems Inc. announces general commercial availability of the D-Wave 2000Q quantum annealer, which it claims has 2000 qubits.[214]
  • Blueprint for a microwave trapped ion quantum computer published.[215]
  • IBM unveils 17-qubit quantum computer—and a better way of benchmarking it.[216]
  • Scientists build a microchip that generates two entangled qubits each with 10 states, for 100 dimensions total.[217]
  • Microsoft reveals Q Sharp, a quantum programming language integrated with Visual Studio. Programs can be executed locally on a 32-qubit simulator, or a 40-qubit simulator on Azure.[218]
  • Kazi Saabique Ahmed, the former intelligent systems advisor of DARPA in collaboration with the researchers of QuAIL develop the world's first user-interactive operating system to be used in commercial quantum computers. And Intel confirms development of a 17-qubit superconducting test chip.[219]
  • IBM reveals a working 50-qubit quantum computer that can maintain its quantum state for 90 microseconds.[220]

2018[]

  • MIT scientists report the discovery of a new triple-photon form of light.[221][222]
  • Oxford researchers successfully use a trapped-ion technique, where they place two charged atoms in a state of quantum entanglement to speed up logic gates by a factor of 20 to 60 times, as compared with the previous best gates, translated to 1.6 microseconds long, with 99.8% precision.[223]
  • QuTech successfully tests a silicon-based 2-spin-qubit processor.[224]
  • Google announces the creation of a 72-qubit quantum chip, called "Bristlecone",[225] achieving a new record.
  • Intel begins testing a silicon-based spin-qubit processor manufactured in the company's D1D Fab in Oregon.[226]
  • Intel confirms development of a 49-qubit superconducting test chip, called "Tangle Lake".[227]
  • Japanese researchers demonstrate universal holonomic quantum gates.[228]
  • Integrated photonic platform for quantum information with continuous variables.[229]
  • On December 17, 2018, the company IonQ introduced the first commercial trapped-ion quantum computer, with a program length of over 60 two-qubit gates, 11 fully connected qubits, 55 addressable pairs, one-qubit gate error <0.03% and two-qubit gate error <1.0% [230][231]
  • On December 21, 2018, the National Quantum Initiative Act was signed into law by President Donald Trump, establishing the goals and priorities for a 10-year plan to accelerate the development of quantum information science and technology applications in the United States.[232][233][234]

2019[]

IBM Q System One (2019), the first circuit-based commercial quantum computer
  • IBM unveils its first commercial quantum computer, the IBM Q System One,[235] designed by UK-based Map Project Office and Universal Design Studio and manufactured by Goppion.[236]
  • Austrian physicists demonstrate self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics using a feedback loop between a classical computer and a quantum co-processor.[237]
  • Quantum Darwinism observed in diamond at room temperature.[238][239]
  • A paper by Google's quantum computer research team was briefly available in late September 2019, claiming the project has reached quantum supremacy.[240][241][242]
  • IBM reveals its biggest quantum computer yet, consisting of 53 qubits. The system goes online in October 2019.[243]
  • University of Science and Technology of China researchers demonstrate boson sampling with 14 detected photons.[244]

2020s[]

2020[]

  • UNSW Sydney develops a way of producing 'hot qubits' – quantum devices that operate at 1.5 kelvins.[245][when?]
  • Griffith University, UNSW and UTS, in partnership with seven universities in the United States, develop noise cancelling for quantum bits via machine learning, taking quantum noise in a quantum chip down to 0%.[246][247]
  • UNSW performs electric nuclear resonance to control single atoms in electronic devices.[248][when?]
  • University of Tokyo and Australian scientists create and successfully test a solution to the quantum wiring problem, creating a 2D structure for qubits. Such structure can be built using existing integrated circuit technology and has a considerably lower cross-talk.[249][when?]
  • 16 January – Quantum physicists report the first direct splitting of one photon into three using spontaneous parametric down-conversion and which may have applications in quantum technology.[250][251]
  • 11 February – Quantum engineers report that they have created artificial atoms in silicon quantum dots for quantum computing and that artificial atoms with a higher number of electrons can be more stable qubits than previously thought possible. Enabling silicon-based quantum computers may make it possible to reuse the manufacturing technology of "classical" modern-day computer chips among other advantages.[252][253]
  • 14 February – Quantum physicists develop a novel single-photon source which may allow to bridge semiconductor-based quantum-computers that use photons by converting the state of an electron spin to the polarisation of a photon. They show that they can generate a single photon in a controlled way without the need for randomly formed quantum dots or structural defects in diamonds.[254][255]
  • 25 February – Scientists visualize a quantum measurement: by taking snapshots of ion states at different times of measurement via coupling of a trapped ion qutrit to the photon environment they show that the changes of the degrees of superpositions and therefore of probabilities of states after measurement happens gradually under the measurement influence.[256][257]
  • 2 March – Scientists report to have achieved repeated quantum nondemolition measurements of an electron's spin in a silicon quantum dot: measurements that don't change the electron's spin in the process.[258][259]
  • 11 March – Quantum engineers report to have managed to control the nucleus of a single atom using only electric fields. This was first suggested to be possible in 1961 and may be used for silicon quantum computers that use single-atom spins without needing oscillating magnetic fields which may be especially useful for nanodevices, for precise sensors of electric and magnetic fields as well as for fundamental inquiries into quantum nature.[260][261]
  • 19 March – A US Army laboratory announces that its scientists analysed a Rydberg sensor's sensitivity to oscillating electric fields over an enormous range of frequencies—from 0 to 10^12 Hertz (the spectrum to 0.3 mm wavelength). The Rydberg sensor may potentially be used detect communications signals as it could reliably detect signals over the entire spectrum and compare favourably with other established electric field sensor technologies, such as electro-optic crystals and dipole antenna-coupled passive electronics.[262][263]
  • 23 March – Researchers report that they have found a way to correct for signal loss in a prototype quantum node that can catch, store and entangle bits of quantum information. Their concepts could be used for key components of in quantum networks and extend their longest possible range.[264][265]
  • 15 April – Researchers demonstrate a proof-of-concept silicon quantum processor unit cell which works at 1.5 kelvins – many times warmer than common quantum processors that are being developed. It may enable integrating classical control electronics with the qubit array and reduce costs substantially. The cooling requirements necessary for quantum computing have been called one of the toughest roadblocks in the field.[266][267][268][269]
  • 16 April – Scientists prove the existence of the Rashba effect in bulk perovskites. Previously researchers have hypothesized that the materials' extraordinary electronic, magnetic and optical properties – which make it a commonly used material for solar cells and quantum electronics – are related to this effect which to date hasn't been proven to be present in the material.[270][271]
  • 8 May – Researchers report to have developed a proof-of-concept of a quantum radar using quantum entanglement and microwaves which may potentially be useful for the development of improved radar systems, security scanners and medical imaging systems.[272][273][274]
  • 12 May – Researchers report to have developed a method to selectively manipulate a layered manganite's correlated electrons' spin state while leaving its orbital state intact using femtosecond X-ray laser pulses. This may indicate that – using variations in the orientations of orbitals – may be used as the basic unit of information in novel IT devices.[275][276]
  • 19 May – Researchers report to have developed the first integrated silicon on-chip low-noise single-photon source compatible with large-scale quantum photonics.[277][278][279]
  • 11 June – Scientists report the generation of rubidium Bose–Einstein condensates (BECs) in the Cold Atom Laboratory aboard the International Space Station under microgravity which could enable improved research of BECs and quantum mechanics, whose physics are scaled to macroscopic scales in BECs, support long-term investigations of few-body physics, support the development of techniques for atom-wave interferometry and atom lasers and has verified the successful operation of the laboratory.[280][281][282]
  • 15 June – Scientists report the development of the smallest synthetic molecular motor, consisting of 12 atoms and a rotor of 4 atoms, shown to be capable of being powered by an electric current using an electron scanning microscope and moving even with very low amounts of energy due to quantum tunneling.[283][284][285]
  • 17 June – Quantum scientists report the development of a system that entangles two photon quantum communication nodes through a microwave cable that can send information inbetween without the photons ever being sent through, or occupying, the cable. On 12 June it was reported that they also, for the first time, entangled two phonons as well as erase information from their measurement after the measurement has been completed using delayed-choice quantum erasure.[286][287][288][289]
  • 13 August – Universal coherence protection is reported to have been achieved in a solid-state spin qubit, a modification that allows quantum systems to stay operational (or "coherent") for 10,000 times longer than before.[290][291]
  • 26 August – Scientists report that that ionizing radiation from environmental radioactive materials and cosmic rays may substantially limit the coherence times of qubits if they aren't shielded adequately.[292][293][294]
  • 28 August – Quantum engineers working for Google report the largest chemical simulation on a quantum computer – a Hartree-Fock approximation with Sycamore paired with a classical computer that analyzed results to provide new parameters for the 12-qubit system.[295][296][297]
  • 2 September – Researchers present an eight-user city-scale quantum communication network, located in Bristol, using already deployed fibres without active switching or trusted nodes.[298][299]
  • 21 September – Researchers report the achievement of quantum entanglement between the motion of a millimetre-sized mechanical oscillator and a disparate distant spin system of a cloud of atoms.[300][301]
  • 3 December – Chinese researchers claim to have achieved quantum supremacy, using a photonic peak 76-qubit system (43 average) known as Jiuzhang, which performed calculations at 100 trillion times the speed of classical supercomputers.[302][303][304]
  • 21 December – Publication of research of "counterfactual quantum communication" – whose first achievement was reported in 2017 – by which information can be exchanged without any physical particle traveling between observers and without quantum teleportation.[305] The research suggests that this is based on some form of relation between the properties of modular angular momentum.[306][307][308]

2021[]

  • 6 January – Chinese researchers report that they have built the world's largest integrated quantum communication network, combining over 700 optical fibers with two QKD-ground-to-satellite links for a total distance between nodes of the network of networks of up to ~4,600 km.[309][310]
  • 13 January – Austrian researchers report the first realization of an entangling gate between two logical qubits encoded in topological quantum error-correction codes using a trapped-ion quantum computer with 10 ions.[311][312]
  • 15 January – Researchers in China report the successful transmission of entangled photons between drones, used as nodes for the development of mobile quantum networks or flexible network extensions, marking the first work in which entangled particles were sent between two moving devices.[313][314]
  • 28 January – Swiss and German researchers report the development of a highly efficient single-photon source for quantum IT with a system of gated quantum dots in a tunable microcavity which captures photons released from these excited "artificial atoms".[315][316]
  • 5 February – Researchers demonstrate a first prototype of quantum-logic gates for distributed quantum computers.[317][318]
  • 13 April – In a preprint, an astronomer describes for the first time how one could search for quantum communication transmissions sent by extraterrestrial intelligence using existing telescope and receiver technology. He also provides arguments for why future searches of SETI should also target interstellar quantum communications.[319][320]
  • 7 May – Two studies complement research published September 2020 (see item) by quantum-entangling two mechanical oscillators.[321][322][323]
  • 8 June – A Japanese tech company achieves quantum communications over optical fibres exceeding 600 km in length, a new world record distance.[324][325][326]
Simplified scale model of the quantum computing demonstrator housed in two 19-inch racks with major components labeled.png
  • 17 June – Austrian, German and Swiss researchers present a two 19-inch rack quantum computing demonstrator, the world's first quality standards-meeting compact quantum computer.[327][328]
  • 7 July – American researchers present a programmable quantum simulator that can operate with 256 qubits.[329][330] and on the same date and journal another team presented quantum simulator of 196 Rydeberg atoms trapped in optical tweezers[331]
  • 25 October – Chinese researchers reported that they have developed the world's fastest programmable quantum computers. The photon based Jiuzhang 2 is claimed to be able to calculate a task in one millisecond, that would otherwise had taken a conventional computer 30 trillion years to complete. And Zuchongzhi 2 is a 66-qubit programmable superconducting quantum computer that is claimed to be the current world's fastest quantum computer that can run a calculation task one million times more complex than Google’s Sycamore, as well as being 10 million times faster.[332][333]
  • 11 November – The first simulation of baryons on a quantum computer is reported by University of Waterloo.[334][335]
  • 16 November – IBM claims that it has created a new 127 quantum bit processor, 'IBM Eagle', which according to a report is the most powerful quantum processor known. According to the report, the company has not yet published an academic paper describing its metrics, performance or abilities.[336][337]

2022[]

  • 18 January – Europe's first quantum annealer with more than 5,000 qubits is launched in Jülich, Germany.[338]

See also[]

References[]

  1. ^ Mor, T and Renner, R, Preface to Special Issue on Quantum Cryptography, Natural Computing 13(4):447-452, DOI: 10.1007/s11047-014-9464-3
  2. ^ Park, James (1970). "The concept of transition in quantum mechanics". . 1 (1): 23–33. Bibcode:1970FoPh....1...23P. CiteSeerX 10.1.1.623.5267. doi:10.1007/BF00708652. S2CID 55890485.
  3. ^ Bennett, C. (November 1973). "Logical Reversibility of Computation" (PDF). IBM Journal of Research and Development. 17 (6): 525–532. doi:10.1147/rd.176.0525.
  4. ^ Poplavskii, R.P (1975). "Thermodynamical models of information processing". Uspekhi Fizicheskikh Nauk (in Russian). 115 (3): 465–501. doi:10.3367/UFNr.0115.197503d.0465.
  5. ^ Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/bf01011339. S2CID 122949592.
  6. ^ Manin, Yu I (1980). Vychislimoe i nevychislimoe (Computable and Noncomputable) (in Russian). Sov. Radio. pp. 13–15. Archived from the original on May 10, 2013. Retrieved March 4, 2013.
  7. ^ Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: Toffoli, Tommaso (1980). J. W. de Bakker and J. van Leeuwen (ed.). Reversible computing (PDF). Automata, Languages and Programming, Seventh Colloquium. Noordwijkerhout, Netherlands: Springer Verlag. pp. 632–644. doi:10.1007/3-540-10003-2_104. ISBN 3-540-10003-2. Archived from the original (PDF) on April 15, 2010.
  8. ^ Benioff, Paul A. (April 1, 1982). "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to Turing machines". International Journal of Theoretical Physics. 21 (3): 177–201. Bibcode:1982IJTP...21..177B. doi:10.1007/BF01857725. ISSN 1572-9575. S2CID 122151269.
  9. ^ Simulating physics with computers https://web.archive.org/web/20190830190404/https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
  10. ^ Benioff, P. (1982). "Quantum mechanical hamiltonian models of turing machines". Journal of Statistical Physics. 29 (3): 515–546. Bibcode:1982JSP....29..515B. doi:10.1007/BF01342185. S2CID 14956017.
  11. ^ Wootters, W. K.; Zurek, W. H. (1982). "A single quantum cannot be cloned". Nature. 299 (5886): 802–803. Bibcode:1982Natur.299..802W. doi:10.1038/299802a0. S2CID 4339227.
  12. ^ Dieks, D. (1982). "Communication by EPR devices". Physics Letters A. 92 (6): 271–272. Bibcode:1982PhLA...92..271D. CiteSeerX 10.1.1.654.7183. doi:10.1016/0375-9601(82)90084-6.
  13. ^ Bennett, Charles H.; Brassard, Gilles (1984). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84. 560: 7–11. arXiv:2003.06557. doi:10.1016/j.tcs.2014.05.025. ISSN 0304-3975.
  14. ^ Peres, Asher (1985). "SReversible Logic and Quantum Compzters". Physical Review A. 32 (6): 3266–3276. Bibcode:1985PhRvA..32.3266P. doi:10.1103/PhysRevA.32.3266. PMID 9896493.
  15. ^ K. Igeta and Y. Yamamoto. "Quantum mechanical computers with single atom and photon fields." International Quantum Electronics Conference (1988) https://www.osapublishing.org/abstract.cfm?uri=IQEC-1988-TuI4
  16. ^ G. J. Milburn. "Quantum optical Fredkin gate." Physical Review Letters 62, 2124 (1989) https://doi.org/10.1103/PhysRevLett.62.2124
  17. ^ Ray, P.; Chakrabarti, B. K.; Chakrabarti, A. (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations". Physical Review B. 39 (16): 11828–11832. Bibcode:1989PhRvB..3911828R. doi:10.1103/PhysRevB.39.11828. PMID 9948016.
  18. ^ Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv:0801.2193. Bibcode:2008RvMP...80.1061D. CiteSeerX 10.1.1.563.9990. doi:10.1103/RevModPhys.80.1061. S2CID 14255125.
  19. ^ Ekert, A. K (1991). "Quantum cryptography based on Bell's theorem". Phys. Rev. Lett. 67 (6): 661–663. Bibcode:1991PhRvL..67..661E. doi:10.1103/PhysRevLett.67.661. PMID 10044956.
  20. ^ Isaac L. Chuang and Yoshihisa Yamamoto. "Simple quantum computer." Physical Review A 52, 3489 (1995)
  21. ^ W.Shor, Peter (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493–R2496. Bibcode:1995PhRvA..52.2493S. doi:10.1103/PhysRevA.52.R2493. PMID 9912632.
  22. ^ Monroe, C; Meekhof, D. M; King, B. E; Itano, W. M; Wineland, D. J (December 18, 1995). "Demonstration of a Fundamental Quantum Logic Gate" (PDF). Physical Review Letters. 75 (25): 4714–4717. Bibcode:1995PhRvL..75.4714M. doi:10.1103/PhysRevLett.75.4714. PMID 10059979. Retrieved December 29, 2007.
  23. ^ Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proc. Roy. Soc. Lond. A. 452 (1954): 2551–2577. arXiv:quant-ph/9601029. Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136. S2CID 8246615.
  24. ^ DiVincenzo, David P (1996). "Topics in Quantum Computers". arXiv:cond-mat/9612126. Bibcode:1996cond.mat.12126D.
  25. ^ A. Yu. Kitaev (2003). "Fault-tolerant quantum computation by anyons". Annals of Physics. 303 (1): 2–30. arXiv:quant-ph/9707021. Bibcode:2003AnPhy.303....2K. doi:10.1016/S0003-4916(02)00018-0. S2CID 119087885.
  26. ^ D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots", Phys. Rev. A 57, p120 (1998); on arXiv.org in Jan. 1997
  27. ^ Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark (April 13, 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15): 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408. S2CID 13891055.
  28. ^ Kane, B. E. (May 14, 1998). "A silicon-based nuclear spin quantum computer". Nature. 393 (6681): 133–137. Bibcode:1998Natur.393..133K. doi:10.1038/30156. ISSN 0028-0836. S2CID 8470520.
  29. ^ Gottesman, Daniel (1999). "The Heisenberg Representation of Quantum Computers". In S. P. Corney; R. Delbourgo; P. D. Jarvis (eds.). Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics. Vol. 22. Cambridge, MA: International Press. pp. 32–43. arXiv:quant-ph/9807006v1. Bibcode:1998quant.ph..7006G.
  30. ^ Braunstein, S. L; Caves, C. M; Jozsa, R; Linden, N; Popescu, S; Schack, R (1999). "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing". Physical Review Letters. 83 (5): 1054–1057. arXiv:quant-ph/9811018. Bibcode:1999PhRvL..83.1054B. doi:10.1103/PhysRevLett.83.1054. S2CID 14429986.
  31. ^ Y. Nakamura, Yu. A. Pashkin and J. S. Tsai. "Coherent control of macroscopic quantum states in a single-Cooper-pair box." Nature 398, 786–788 (1999) https://doi.org/10.1038/19718
  32. ^ Linden, Noah; Popescu, Sandu (2001). "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?". Physical Review Letters. 87 (4): 047901. arXiv:quant-ph/9906008. Bibcode:2001PhRvL..87d7901L. doi:10.1103/PhysRevLett.87.047901. PMID 11461646. S2CID 10533287.
  33. ^ Raussendorf, R; Briegel, H. J (2001). "A One-Way Quantum Computer". Physical Review Letters. 86 (22): 5188–91. Bibcode:2001PhRvL..86.5188R. CiteSeerX 10.1.1.252.5345. doi:10.1103/PhysRevLett.86.5188. PMID 11384453.
  34. ^ n.d. Institute for Quantum Computing "Quick Facts". May 15, 2013. Retrieved July 26, 2016.
  35. ^ Gulde, S; Riebe, M; Lancaster, G. P. T; Becher, C; Eschner, J; Häffner, H; Schmidt-Kaler, F; Chuang, I. L; Blatt, R (January 2, 2003). "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer". Nature. 421 (6918): 48–50. Bibcode:2003Natur.421...48G. doi:10.1038/nature01336. PMID 12511949. S2CID 4401708.
  36. ^ Pittman, T. B.; Fitch, M. J.; Jacobs, B. C; Franson, J. D. (2003). "Experimental controlled-not logic gate for single photons in the coincidence basis". Phys. Rev. A. 68 (3): 032316. arXiv:quant-ph/0303095. Bibcode:2003PhRvA..68c2316P. doi:10.1103/physreva.68.032316. S2CID 119476903.
  37. ^ O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (2003). "Demonstration of an all-optical quantum controlled-NOT gate". Nature. 426 (6964): 264–267. arXiv:quant-ph/0403062. Bibcode:2003Natur.426..264O. doi:10.1038/nature02054. PMID 14628045. S2CID 9883628.
  38. ^ Schmidt-Kaler, F; Häffner, H; Riebe, M; Gulde, S; Lancaster, G. P. T; Deutschle, T; Becher, C; Roos, C. F; Eschner, J; Blatt, R (March 27, 2003). "Realization of the Cirac-Zoller controlled-NOT quantum gate". Nature. 422 (6930): 408–411. Bibcode:2003Natur.422..408S. doi:10.1038/nature01494. PMID 12660777. S2CID 4401898.
  39. ^ Riebe, M; Häffner, H; Roos, C. F; Hänsel, W; Benhelm, J; Lancaster, G. P. T; Körber, T. W; Becher, C; Schmidt-Kaler, F; James, D. F. V; Blatt, R (June 17, 2004). "Deterministic quantum teleportation with atoms". Nature. 429 (6993): 734–737. Bibcode:2004Natur.429..734R. doi:10.1038/nature02570. PMID 15201903. S2CID 4397716.
  40. ^ Zhao, Z; Chen, Y. A; Zhang, A. N; Yang, T; Briegel, H. J; Pan, J. W (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". Nature. 430 (6995): 54–58. arXiv:quant-ph/0402096. Bibcode:2004Natur.430...54Z. doi:10.1038/nature02643. PMID 15229594. S2CID 4336020.
  41. ^ Dumé, Belle (November 22, 2005). "Breakthrough for quantum measurement". PhysicsWeb. Retrieved August 10, 2018.
  42. ^ Häffner, H; Hänsel, W; Roos, C. F; Benhelm, J; Chek-Al-Kar, D; Chwalla, M; Körber, T; Rapol, U. D; Riebe, M; Schmidt, P. O; Becher, C; Gühne, O; Dür, W; Blatt, R (December 1, 2005). "Scalable multiparticle entanglement of trapped ions". Nature. 438 (7068): 643–646. arXiv:quant-ph/0603217. Bibcode:2005Natur.438..643H. doi:10.1038/nature04279. PMID 16319886. S2CID 4411480.
  43. ^ January 4, 2006 University of Oxford "Bang-bang: a step closer to quantum supercomputers". Retrieved December 29, 2007.
  44. ^ Dowling, Jonathan P. (2006). "To Compute or Not to Compute?". Nature. 439 (7079): 919–920. Bibcode:2006Natur.439..919D. doi:10.1038/439919a. PMID 16495978. S2CID 4327844.
  45. ^ Belle Dumé (February 23, 2007). "Entanglement heats up". Physics World. Archived from the original on October 19, 2007.
  46. ^ February 16, 2006 University of York "Captain Kirk's clone and the eavesdropper" (Press release). Archived from the original on February 7, 2007. Retrieved December 29, 2007.
  47. ^ March 24, 2006 Soft Machines "The best of both worlds – organic semiconductors in inorganic nanostructures". Retrieved May 20, 2010.
  48. ^ June 8, 2010 New Scientist Tom Simonite. "Error-check breakthrough in quantum computing". Retrieved May 20, 2010.
  49. ^ May 8, 2006 ScienceDaily "12-qubits Reached In Quantum Information Quest". Retrieved May 20, 2010.
  50. ^ July 7, 2010 New Scientist Tom Simonite. "Flat 'ion trap' holds quantum computing promise". Retrieved May 20, 2010.
  51. ^ July 12, 2006 PhysOrg.com Luerweg, Frank. "Quantum Computer: Laser tweezers sort atoms". Archived from the original on December 15, 2007. Retrieved December 29, 2007.
  52. ^ August 16, 2006 New Scientist "'Electron-spin' trick boosts quantum computing". Archived from the original on November 22, 2006. Retrieved December 29, 2007.
  53. ^ August 16, 2006 NewswireToday Michael Berger. "Quantum Dot Molecules – One Step Further Towards Quantum Computing". Retrieved December 29, 2007.
  54. ^ September 7, 2006 PhysOrg.com "Spinning new theory on particle spin brings science closer to quantum computing". Archived from the original on January 17, 2008. Retrieved December 29, 2007.
  55. ^ October 4, 2006 New Scientist Merali, Zeeya (2006). "Spooky steps to a quantum network". New Scientist. 192 (2572): 12. doi:10.1016/s0262-4079(06)60639-8. Retrieved December 29, 2007.
  56. ^ October 24, 2006 PhysOrg.com Lisa Zyga. "Scientists present method for entangling macroscopic objects". Archived from the original on October 13, 2007. Retrieved December 29, 2007.
  57. ^ November 2, 2006 University of Illinois at Urbana–Champaign James E. Kloeppel. "Quantum coherence possible in incommensurate electronic systems". Retrieved August 19, 2010.
  58. ^ November 19, 2006 PhysOrg.com "A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins'". Archived from the original on September 29, 2007. Retrieved December 29, 2007.
  59. ^ January 8, 2007 New Scientist Jeff Hecht. "Nanoscopic 'coaxial cable' transmits light". Retrieved December 30, 2007.
  60. ^ February 21, 2007 The Engineer "Toshiba unveils quantum security". Retrieved December 30, 2007.
  61. ^ Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei (2007). "Experimental entanglement of six photons in graph states". Nature Physics. 3 (2): 91–95. arXiv:quant-ph/0609130. Bibcode:2007NatPh...3...91L. doi:10.1038/nphys507. S2CID 16319327.
  62. ^ March 15, 2007 New Scientist Zeeya Merali. "The universe is a string-net liquid". Retrieved December 30, 2007.
  63. ^ March 12, 2007 Max Planck Society "A Single-Photon Server with Just One Atom" (Press release). Retrieved December 30, 2007.
  64. ^ April 18, 2007 PhysOrg.com Miranda Marquit. "First use of Deutsch's Algorithm in a cluster state quantum computer". Archived from the original on January 17, 2008. Retrieved December 30, 2007.
  65. ^ April 19, 2007 Electronics Weekly Steve Bush. "Cambridge team closer to working quantum computer". Archived from the original on May 15, 2012. Retrieved December 30, 2007.
  66. ^ May 7, 2007 Wired Cyrus Farivar (May 7, 2007). "It's the "Wiring" That's Tricky in Quantum Computing". Wired. Archived from the original on July 6, 2008. Retrieved December 30, 2007.
  67. ^ May 8, 2007 Media-Newswire.com "NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits" (Press release). Retrieved December 30, 2007.
  68. ^ May 16, 2007 Scientific American JR Minkel. "Spintronics Breaks the Silicon Barrier". Retrieved December 30, 2007.
  69. ^ May 22, 2007 PhysOrg.com Lisa Zyga. "Scientists demonstrate quantum state exchange between light and matter". Archived from the original on March 7, 2008. Retrieved December 30, 2007.
  70. ^ June 1, 2007 Science Dutt, M. V; Childress, L; Jiang, L; Togan, E; Maze, J; Jelezko, F; Zibrov, A. S; Hemmer, P. R; Lukin, M. D (2007). "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond". Science. 316 (5829): 1312–6. Bibcode:2007Sci...316.....D. doi:10.1126/science.1139831. PMID 17540898. S2CID 20697722.
  71. ^ June 14, 2007 Nature Plantenberg, J. H.; De Groot, P. C.; Harmans, C. J. P. M.; Mooij, J. E. (2007). "Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits". Nature. 447 (7146): 836–839. Bibcode:2007Natur.447..836P. doi:10.1038/nature05896. PMID 17568742. S2CID 3054763.
  72. ^ June 17, 2007 New Scientist Mason Inman. "Atom trap is a step towards a quantum computer". Retrieved December 30, 2007.
  73. ^ June 29, 2007 Nanowerk.com "Can nuclear qubits point the way?". Retrieved December 30, 2007.
  74. ^ July 27, 2007 ScienceDaily "Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers". Retrieved December 30, 2007.
  75. ^ July 23, 2007 PhysOrg.com Miranda Marquit. "Indium arsenide may provide clues to quantum information processing". Archived from the original on September 26, 2007. Retrieved December 30, 2007.
  76. ^ July 25, 2007 National Institute of Standards and Technology "Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance". Archived from the original on December 18, 2007. Retrieved December 30, 2007.
  77. ^ August 15, 2007 PhysOrg.com Lisa Zyga. "Ultrafast quantum computer uses optically controlled electrons". Archived from the original on January 2, 2008. Retrieved December 30, 2007.
  78. ^ August 15, 2007 Electronics Weekly Steve Bush. "Research points way to qubits on standard chips". Retrieved December 30, 2007.
  79. ^ August 17, 2007 ScienceDaily "Computing Breakthrough Could Elevate Security To Unprecedented Levels". Retrieved December 30, 2007.
  80. ^ August 21, 2007 New Scientist Stephen Battersby. "Blueprints drawn up for quantum computer RAM". Retrieved December 30, 2007.
  81. ^ August 26, 2007 PhysOrg.com "Photon-transistors for the supercomputers of the future". Archived from the original on January 1, 2008. Retrieved December 30, 2007.
  82. ^ September 5, 2007 University of Michigan "Physicists establish "spooky" quantum communication". Archived from the original on December 28, 2007. Retrieved December 30, 2007.
  83. ^ September 13, 2007 huliq.com "Qubits poised to reveal our secrets". Retrieved December 30, 2007.
  84. ^ September 26, 2007 New Scientist Saswato Das. "Quantum chip rides on superconducting bus". Retrieved December 30, 2007.
  85. ^ September 27, 2007 ScienceDaily "Superconducting Quantum Computing Cable Created". Retrieved December 30, 2007.
  86. ^ October 11, 2007 Electronics Weekly Steve Bush. "Qubit transmission signals quantum computing advance". Archived from the original on October 12, 2007. Retrieved December 30, 2007.
  87. ^ October 8, 2007 TG Daily Rick C. Hodgin. "New material breakthrough brings quantum computers one step closer". Archived from the original on December 12, 2007. Retrieved December 30, 2007.
  88. ^ October 19, 2007 Optics.org "Single electron-spin memory with a semiconductor quantum dot". Retrieved December 30, 2007.
  89. ^ November 7, 2007 New Scientist Stephen Battersby. "'Light trap' is a step towards quantum memory". Retrieved December 30, 2007.
  90. ^ November 12, 2007 Nanowerk.com "World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference". Retrieved December 30, 2007.
  91. ^ December 12, 2007 PhysOrg.com "Desktop device generates and traps rare ultracold molecules". Archived from the original on December 15, 2007. Retrieved December 31, 2007.
  92. ^ December 19, 2007 University of Toronto Kim Luke. "U of T scientists make quantum computing leap Research is step toward building first quantum computers". Archived from the original on December 28, 2007. Retrieved December 31, 2007.
  93. ^ February 18, 2007 www.nature.com (journal) Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (2007). "Spin qubits in graphene quantum dots". Nature Physics. 3 (3): 192–196. arXiv:cond-mat/0611252. Bibcode:2007NatPh...3..192T. doi:10.1038/nphys544. S2CID 119431314.
  94. ^ January 15, 2008 Miranda Marquit. "Graphene quantum dot may solve some quantum computing problems". Archived from the original on January 17, 2008. Retrieved January 16, 2008.
  95. ^ January 25, 2008 EETimes Europe. "Scientists succeed in storing quantum bit". Retrieved February 5, 2008.
  96. ^ February 26, 2008 Lisa Zyga. "Physicists demonstrate qubit-qutrit entanglement". Archived from the original on February 29, 2008. Retrieved February 27, 2008.
  97. ^ February 26, 2008 ScienceDaily. "Analog logic for quantum computing". Retrieved February 27, 2008.
  98. ^ March 5, 2008 Zenaida Gonzalez Kotala. "Future 'quantum computers' will offer increased efficiency... and risks". Retrieved March 5, 2008.
  99. ^ March 6, 2008 Ray Kurzweil. "Entangled memory is a first". Retrieved March 8, 2008.
  100. ^ March 27, 2008 Joann Fryer. "Silicon chips for optical quantum technologies". Retrieved March 29, 2008.
  101. ^ April 7, 2008 Ray Kurzweil. "Qutrit breakthrough brings quantum computers closer". Retrieved April 7, 2008.
  102. ^ April 15, 2008 Kate Greene. "Toward a quantum internet". Retrieved April 16, 2008.
  103. ^ April 24, 2008 Princeton University. "Scientists discover exotic quantum state of matter". Archived from the original on April 30, 2008. Retrieved April 29, 2008.
  104. ^ May 23, 2008 Belle Dumé. "Spin states endure in quantum dot". Archived from the original on May 29, 2008. Retrieved June 3, 2008.
  105. ^ May 27, 2008 Chris Lee. "Molecular magnets in soap bubbles could lead to quantum RAM". Retrieved June 3, 2008.
  106. ^ June 2, 2008 Weizmann Institute of Science. "Scientists find new 'quasiparticles'". Retrieved June 3, 2008.
  107. ^ June 23, 2008 Lisa Zyga. "Physicists Store Images in Vapor". Archived from the original on September 15, 2008. Retrieved June 26, 2008.
  108. ^ June 25, 2008 Physorg.com. "Physicists Produce Quantum-Entangled Images". Archived from the original on August 29, 2008. Retrieved June 26, 2008.
  109. ^ June 26, 2008 Steve Tally. "Quantum computing breakthrough arises from unknown molecule". Retrieved June 28, 2008.
  110. ^ July 17, 2008 Lauren Rugani. "Quantum Leap". Retrieved July 17, 2008.
  111. ^ August 5, 2008 Science Daily. "Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons". Retrieved August 6, 2008.
  112. ^ September 3, 2008 Physorg.com. "New probe could aid quantum computing". Archived from the original on September 5, 2008. Retrieved September 6, 2008.
  113. ^ September 25, 2008 ScienceDaily. "Novel Process Promises To Kick-start Quantum Technology Sector". Retrieved October 16, 2008.
  114. ^ September 22, 2008 Jeremy L. O’Brien. "Quantum computing over the rainbow". Retrieved October 16, 2008.
  115. ^ October 20, 2008 Science Blog. "Relationships Between Quantum Dots – Stability and Reproduction". Archived from the original on October 22, 2008. Retrieved October 20, 2008.
  116. ^ October 22, 2008 Steven Schultz. "Memoirs of a qubit: Hybrid memory solves key problem for quantum computing". Retrieved October 23, 2008.
  117. ^ October 23, 2008 National Science Foundation. "World's Smallest Storage Space ... the Nucleus of an Atom". Retrieved October 27, 2008.
  118. ^ November 20, 2008 Dan Stober. "Stanford: Quantum computing spins closer". Retrieved November 22, 2008.
  119. ^ December 5, 2008 Miranda Marquit. "Quantum computing: Entanglement may not be necessary". Archived from the original on December 8, 2008. Retrieved December 9, 2008.
  120. ^ December 19, 2008 . "Dwave System's 128 qubit chip has been made". Archived from the original on December 23, 2008. Retrieved December 20, 2008.
  121. ^ April 7, 2009 Next Big Future. "Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing". Archived from the original on April 11, 2009. Retrieved May 19, 2009.
  122. ^ April 23, 2009 Kate Greene. "Extending the Life of Quantum Bits". Retrieved June 1, 2020.
  123. ^ May 29, 2009 physorg.com. "Researchers make breakthrough in the quantum control of light". Archived from the original on January 31, 2013. Retrieved May 30, 2009.
  124. ^ June 3, 2009 physorg.com. "Physicists demonstrate quantum entanglement in mechanical system". Archived from the original on January 31, 2013. Retrieved June 13, 2009.
  125. ^ June 24, 2009 Nicole Casal Moore. "Lasers can lengthen quantum bit memory by 1,000 times". Retrieved June 27, 2009.
  126. ^ June 29, 2009 www.sciencedaily.com. "First Electronic Quantum Processor Created". Retrieved June 29, 2009.
  127. ^ Lu, C. Y; Gao, W. B; Gühne, O; Zhou, X. Q; Chen, Z. B; Pan, J. W (2009). "Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator". Physical Review Letters. 102 (3): 030502. arXiv:0710.0278. Bibcode:2009PhRvL.102c0502L. doi:10.1103/PhysRevLett.102.030502. PMID 19257336. S2CID 11788852.
  128. ^ July 6, 2009 Dario Borghino. "Quantum computer closer: Optical transistor made from single molecule". Retrieved July 8, 2009.
  129. ^ July 8, 2009 R. Colin Johnson. "NIST advances quantum computing". Retrieved July 9, 2009.
  130. ^ August 7, 2009 Kate Greene. "Scaling Up a Quantum Computer". Retrieved August 8, 2009.
  131. ^ August 11, 2009 Devitt, S. J; Fowler, A. G; Stephens, A. M; Greentree, A. D; Hollenberg, L. C. L; Munro, W. J; Nemoto, K (2009). "Architectural design for a topological cluster state quantum computer". New J. Phys. 11 (83032): 1221. arXiv:0808.1782. Bibcode:2009NJPh...11h3032D. doi:10.1088/1367-2630/11/8/083032. S2CID 56195929.
  132. ^ September 4, 2009 Home, J. P; Hanneke, D; Jost, J. D; Amini, J. M; Leibfried, D; Wineland, D. J (2009). "Complete Methods Set for Scalable Ion Trap Quantum Information Processing". Science. 325 (5945): 1227–30. arXiv:0907.1865. Bibcode:2009Sci...325.1227H. doi:10.1126/science.1177077. PMID 19661380. S2CID 24468918.
  133. ^ Politi, A; Matthews, J. C; O'Brien, J. L (2009). "Shor's Quantum Factoring Algorithm on a Photonic Chip". Science. 325 (5945): 1221. arXiv:0911.1242. Bibcode:2009Sci...325.1221P. doi:10.1126/science.1173731. PMID 19729649. S2CID 17259222.
  134. ^ Wesenberg, J. H; Ardavan, A; Briggs, G. A. D; Morton, J. J. L; Schoelkopf, R. J; Schuster, D. I; Mølmer, K (2009). "Quantum Computing with an Electron Spin Ensemble". Physical Review Letters. 103 (7): 070502. arXiv:0903.3506. Bibcode:2009PhRvL.103g0502W. doi:10.1103/PhysRevLett.103.070502. PMID 19792625. S2CID 6990125.
  135. ^ September 23, 2009 Geordie. "Experimental Demonstration of a Robust and Scalable Flux Qubit". Retrieved September 24, 2009.
  136. ^ September 25, 2009 Colin Barras. "Photon 'machine gun' could power quantum computers". Retrieved September 26, 2009.
  137. ^ October 9, 2009 Larry Hardesty. "Quantum computing may actually be useful". Retrieved October 10, 2009.
  138. ^ November 15, 2009 New Scientist. "First universal programmable quantum computer unveiled". Retrieved November 16, 2009.
  139. ^ November 20, 2009 ScienceBlog. "UCSB physicists move 1 step closer to quantum computing". Archived from the original on November 23, 2009. Retrieved November 23, 2009.
  140. ^ December 11, 2009 Jeremy Hsu. "Google Demonstrates Quantum Algorithm Promising Superfast Search". Retrieved December 14, 2009.
  141. ^ Harris, R; Brito, F; Berkley, A J; Johansson, J; Johnson, M W; Lanting, T; Bunyk, P; Ladizinsky, E; Bumble, B; Fung, A; Kaul, A; Kleinsasser, A; Han, S (2009). "Synchronization of multiple coupled rf-SQUID flux qubits". New Journal of Physics. 11 (12): 123022. arXiv:0903.1884. Bibcode:2009NJPh...11l3022H. doi:10.1088/1367-2630/11/12/123022. S2CID 54065717.
  142. ^ Monz, T; Kim, K; Villar, A. S; Schindler, P; Chwalla, M; Riebe, M; Roos, C. F; Häffner, H; Hänsel, W; Hennrich, M; Blatt, R (2009). "Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits". Physical Review Letters. 103 (20): 200503. arXiv:0909.3715. Bibcode:2009PhRvL.103t0503M. doi:10.1103/PhysRevLett.103.200503. PMID 20365970. S2CID 7632319.
  143. ^ "A decade of Physics World breakthroughs: 2009 – the first quantum computer". November 29, 2019.
  144. ^ January 20, 2010 arXiv blog. "Making Light of Ion Traps". Retrieved January 21, 2010.
  145. ^ January 28, 2010 Charles Petit (January 28, 2010). "Quantum Computer Simulates Hydrogen Molecule Just Right". Wired. Retrieved February 5, 2010.
  146. ^ February 4, 2010 Larry Hardesty. "First germanium laser brings us closer to 'optical computers'". Archived from the original on December 24, 2011. Retrieved February 4, 2010.
  147. ^ February 6, 2010 Science Daily. "Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors". Retrieved February 6, 2010.
  148. ^ March 18, 2010 Jason Palmer (March 17, 2010). "Team's quantum object is biggest by factor of billions". BBC News. Retrieved March 20, 2010.
  149. ^ University of Cambridge. "Cambridge discovery could pave the way for quantum computing". Retrieved March 20, 2010.[dead link]
  150. ^ April 1, 2010 ScienceDaily. "Racetrack Ion Trap Is a Contender in Quantum Computing Quest". Retrieved April 3, 2010.
  151. ^ April 21, 2010 Rice University (April 21, 2010). "Bizarre matter could find use in quantum computers". Retrieved August 29, 2018.
  152. ^ May 27, 2010 E. Vetsch; et al. "German physicists develop a quantum interface between light and atoms". Archived from the original on December 19, 2011. Retrieved April 22, 2010.
  153. ^ June 3, 2010 Asavin Wattanajantra. "New form of LED brings quantum computing closer". Archived from the original on June 5, 2010. Retrieved June 5, 2010.{{cite news}}: CS1 maint: unfit URL (link)
  154. ^ August 29, 2010 Munro, W. J; Harrison, K. A; Stephens, A. M; Devitt, S. J; Nemoto, K (2010). "From quantum multiplexing to high-performance quantum networking". Nature Photonics. 4 (11): 792–796. arXiv:0910.4038. Bibcode:2010NaPho...4..792M. doi:10.1038/nphoton.2010.213.
  155. ^ September 17, 2010 Kurzweil accelerating intelligence. "Two-photon optical chip enables more complex quantum computing". Retrieved September 17, 2010.
  156. ^ "Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps". ScienceDaily. May 28, 2010. Retrieved September 20, 2010.
  157. ^ "Quantum Future: Designing and Testing Microfabricated Planar Ion Traps". Georgia Tech Research Institute. Retrieved September 20, 2010.
  158. ^ Aaronson, Scott; Arkhipov, Alex (2011). The Computational Complexity of Linear Optics. New York, New York, USA: ACM Press. p. 333—342. arXiv:1011.3245. doi:10.1145/1993636.1993682. ISBN 978-1-4503-0691-1.
  159. ^ December 23, 2010 TU Delft. "TU scientists in Nature: Better control of building blocks for quantum computer". Archived from the original on December 24, 2010. Retrieved December 26, 2010.
  160. ^ Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L. W; Itoh, Kohei M; Morton, John J. L (2011). "Entanglement in a solid-state spin ensemble". Nature. 470 (7332): 69–72. arXiv:1010.0107. Bibcode:2011Natur.470...69S. doi:10.1038/nature09696. PMID 21248751. S2CID 4322097.
  161. ^ February 14, 2011 UC Santa Barbara Office of Public Affairs. "International Team of Scientists Says It's High 'Noon' for Microwave Photons". Retrieved February 16, 2011.
  162. ^ February 24, 2011 Kurzweil Accelerating Intelligence. "'Quantum antennas' enable exchange of quantum information between two memory cells". Retrieved February 24, 2011.
  163. ^ Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L (2011). "Multimode quantum interference of photons in multiport integrated devices". Nature Communications. 2: 224. arXiv:1007.1372. Bibcode:2011NatCo...2..224P. doi:10.1038/ncomms1228. PMC 3072100. PMID 21364563.
  164. ^ March 7, 2011 KFC. "New Magnetic Resonance Technique Could Revolutionise Quantum Computing". Retrieved June 1, 2020.
  165. ^ March 17, 2011 Christof Weitenberg; Manuel Endres; Jacob F. Sherson; Marc Cheneau; Peter Schauß; Takeshi Fukuhara; Immanuel Bloch & Stefan Kuhr. "A Quantum Pen for Single Atoms". Archived from the original on March 18, 2011. Retrieved March 19, 2011.
  166. ^ March 21, 2011 Cordisnews. "German research brings us one step closer to quantum computing". Retrieved March 22, 2011.
  167. ^ Monz, T; Schindler, P; Barreiro, J. T; Chwalla, M; Nigg, D; Coish, W. A; Harlander, M; Hänsel, W; Hennrich, M; Blatt, R (2011). "14-Qubit Entanglement: Creation and Coherence". Physical Review Letters. 106 (13): 130506. arXiv:1009.6126. Bibcode:2011PhRvL.106m0506M. doi:10.1103/PhysRevLett.106.130506. PMID 21517367. S2CID 8155660.
  168. ^ May 12, 2011 Physicsworld.com. "Quantum-computing firm opens the box". Archived from the original on May 15, 2011. Retrieved May 17, 2011.
  169. ^ Physorg.com (May 26, 2011). "Repetitive error correction demonstrated in a quantum processor". physorg.com. Archived from the original on January 7, 2012. Retrieved May 26, 2011.
  170. ^ June 27, 2011 UC Santa Barbara. "International Team Demonstrates Subatomic Quantum Memory in Diamond". Retrieved June 29, 2011.
  171. ^ July 15, 2011 Nanowerk News. "Quantum computing breakthrough in the creation of massive numbers of entangled qubits". Retrieved July 18, 2011.
  172. ^ July 20, 2011 Nanowerk News. "Scientists take the next major step toward quantum computing". Retrieved July 20, 2011.
  173. ^ August 2, 2011 nanowerk. "Dramatic simplification paves the way for building a quantum computer". Retrieved August 3, 2011.
  174. ^ Ospelkaus, C; Warring, U; Colombe, Y; Brown, K. R; Amini, J. M; Leibfried, D; Wineland, D. J (2011). "Microwave quantum logic gates for trapped ions". Nature. 476 (7359): 181–184. arXiv:1104.3573. Bibcode:2011Natur.476..181O. doi:10.1038/nature10290. PMID 21833084. S2CID 2902510.
  175. ^ August 30, 2011 Laura Ost. "NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit". Retrieved September 3, 2011.
  176. ^ September 1, 2011 Mariantoni, M; Wang, H; Yamamoto, T; Neeley, M; Bialczak, R. C; Chen, Y; Lenander, M; Lucero, E; O'Connell, A. D; Sank, D; Weides, M; Wenner, J; Yin, Y; Zhao, J; Korotkov, A. N; Cleland, A. N; Martinis, J. M (2011). "Implementing the Quantum von Neumann Architecture with Superconducting Circuits". Science. 334 (6052): 61–65. arXiv:1109.3743. Bibcode:2011Sci...334...61M. doi:10.1126/science.1208517. PMID 21885732. S2CID 11483576.
  177. ^ Jablonski, Chris (October 4, 2011). "One step closer to quantum computers". ZDnet. Retrieved August 29, 2018.
  178. ^ December 2, 2011 Clara Moskowitz; Ian Walmsley; Michael Sprague. "Two Diamonds Linked by Strange Quantum Entanglement". Retrieved December 2, 2011.
  179. ^ Bian, Z; Chudak, F; MacReady, W. G; Clark, L; Gaitan, F (2013). "Experimental determination of Ramsey numbers with quantum annealing". Physical Review Letters. 111 (13): 130505. arXiv:1201.1842. Bibcode:2013PhRvL.111m0505B. doi:10.1103/PhysRevLett.111.130505. PMID 24116761. S2CID 1303361.
  180. ^ Fuechsle, M; Miwa, J. A; Mahapatra, S; Ryu, H; Lee, S; Warschkow, O; Hollenberg, L. C; Klimeck, G; Simmons, M. Y (February 19, 2012). "A single-atom transistor". Nature Nanotechnology. 7 (4): 242–246. Bibcode:2012NatNa...7..242F. doi:10.1038/nnano.2012.21. PMID 22343383. S2CID 14952278.
  181. ^ John Markoff (February 19, 2012). "Physicists Create a Working Transistor From a Single Atom". The New York Times. Retrieved February 19, 2012.
  182. ^ Grotz, Bernhard; Hauf, Moritz V; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A (2012). "Charge state manipulation of qubits in diamond". Nature Communications. 3: 729. Bibcode:2012NatCo...3..729G. doi:10.1038/ncomms1729. PMC 3316888. PMID 22395620.
  183. ^ Britton, J. W; Sawyer, B. C; Keith, A. C; Wang, C. C; Freericks, J. K; Uys, H; Biercuk, M. J; Bollinger, J. J (April 26, 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins". Nature. 484 (7395): 489–492. arXiv:1204.5789. Bibcode:2012Natur.484..489B. doi:10.1038/nature10981. PMID 22538611. S2CID 4370334.
  184. ^ Lucy Sherriff. "300 atom quantum simulator smashes qubit record". Retrieved February 9, 2015.
  185. ^ Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei (2012). "Experimental demonstration of topological error correction". Nature. 482 (7386): 489–494. arXiv:0905.1542. Bibcode:2012Natur.482..489Y. doi:10.1038/nature10770. PMID 22358838. S2CID 4307662.
  186. ^ 1QBit. "1QBit Website".
  187. ^ October 14, 2012 Munro, W. J; Stephens, A. M; Devitt, S. J; Harrison, K. A; Nemoto, K (2012). "Quantum communication without the necessity of quantum memories". Nature Photonics. 6 (11): 777–781. arXiv:1306.4137. Bibcode:2012NaPho...6..777M. doi:10.1038/nphoton.2012.243. S2CID 5056130.
  188. ^ Maurer, P. C; Kucsko, G; Latta, C; Jiang, L; Yao, N. Y; Bennett, S. D; Pastawski, F; Hunger, D; Chisholm, N; Markham, M; Twitchen, D. J; Cirac, J. I; Lukin, M. D (June 8, 2012). "Room-Temperature Quantum Bit Memory Exceeding One Second". Science (Submitted manuscript). 336 (6086): 1283–1286. Bibcode:2012Sci...336.1283M. doi:10.1126/science.1220513. PMID 22679092. S2CID 2684102.
  189. ^ Peckham, Matt (July 6, 2012). "Quantum Computing at Room Temperature - Now a Reality". Magazine/Periodical. Time Magazine (Techland) Time Inc. p. 1. Retrieved August 5, 2012.
  190. ^ Koh, Dax Enshan; Hall, Michael J. W; Setiawan; Pope, James E; Marletto, Chiara; Kay, Alastair; Scarani, Valerio; Ekert, Artur (2012). "Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion". Physical Review Letters. 109 (16): 160404. arXiv:1202.3571. Bibcode:2012PhRvL.109p0404K. doi:10.1103/PhysRevLett.109.160404. PMID 23350071.
  191. ^ December 7, 2012 Horsman, C; Fowler, A. G; Devitt, S. J; Van Meter, R (2012). "Surface code quantum computing by lattice surgery". New J. Phys. 14 (12): 123011. arXiv:1111.4022. Bibcode:2012NJPh...14l3011H. doi:10.1088/1367-2630/14/12/123011. S2CID 119212756.
  192. ^ Kastrenakes, Jacob (November 14, 2013). "Researchers smash through quantum computer storage record". Webzine. The Verge. Retrieved November 20, 2013.
  193. ^ "Quantum Computer Breakthrough 2013". November 24, 2013.
  194. ^ October 10, 2013 Devitt, S. J; Stephens, A. M; Munro, W. J; Nemoto, K (2013). "Requirements for fault-tolerant factoring on an atom-optics quantum computer". Nature Communications. 4: 2524. arXiv:1212.4934. Bibcode:2013NatCo...4.2524D. doi:10.1038/ncomms3524. PMID 24088785. S2CID 7229103.
  195. ^ Penetrating Hard Targets project
  196. ^ NSA seeks to develop quantum computer to crack nearly every kind of encryption -- KurzweilAI.net January 3, 2014
  197. ^ NSA seeks to build quantum computer that could crack most types of encryption -- Washington Post
  198. ^ The NSA Is Building a Computer to Crack Almost Any Code - Time.com
  199. ^ August 4, 2014 Nemoto, K.; Trupke, M.; Devitt, S. J; Stephens, A. M; Scharfenberger, B; Buczak, K; Nobauer, T; Everitt, M. S; Schmiedmayer, J; Munro, W. J (2014). "Photonic architecture for scalable quantum information processing in diamond". Physical Review X. 4 (3): 031022. arXiv:1309.4277. Bibcode:2014PhRvX...4c1022N. doi:10.1103/PhysRevX.4.031022. S2CID 118418371.
  200. ^ Nigg, D; Müller, M; Martinez, M. A; Schindler, P; Hennrich, M; Monz, T; Martin-Delgado, M. A; Blatt, R (July 18, 2014). "Quantum computations on a topologically encoded qubit". Science. 345 (6194): 302–305. arXiv:1403.5426. Bibcode:2014Sci...345..302N. doi:10.1126/science.1253742. PMID 24925911. S2CID 9677048.
  201. ^ Markoff, John (May 29, 2014). "Scientists Report Finding Reliable Way to Teleport Data". New York Times. Retrieved May 29, 2014.
  202. ^ Pfaff, W; Hensen, B. J; Bernien, H; Van Dam, S. B; Blok, M. S; Taminiau, T. H; Tiggelman, M. J; Schouten, R. N; Markham, M; Twitchen, D. J; Hanson, R (May 29, 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science. 345 (6196): 532–535. arXiv:1404.4369. Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. PMID 25082696. S2CID 2190249.
  203. ^ Zhong, Manjin; Hedges, Morgan P; Ahlefeldt, Rose L; Bartholomew, John G; Beavan, Sarah E; Wittig, Sven M; Longdell, Jevon J; Sellars, Matthew J (2015). "Optically addressable nuclear spins in a solid with a six-hour coherence time". Nature. 517 (7533): 177–180. Bibcode:2015Natur.517..177Z. doi:10.1038/nature14025. PMID 25567283. S2CID 205241727.
  204. ^ April 13, 2015 "Breakthrough opens door to affordable quantum computers". Retrieved April 16, 2015.
  205. ^ Córcoles, A.D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M (2015). "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits". Nature Communications. 6: 6979. arXiv:1410.6419. Bibcode:2015NatCo...6.6979C. doi:10.1038/ncomms7979. PMC 4421819. PMID 25923200.
  206. ^ June 22, 2015 "D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier". Retrieved June 22, 2015.
  207. ^ October 6, 2015 "Crucial hurdle overcome in quantum computing". Retrieved October 6, 2015.
  208. ^ "Quantum computer emulated by a classical system".
  209. ^ Monz, T; Nigg, D; Martinez, E. A; Brandl, M. F; Schindler, P; Rines, R; Wang, S. X; Chuang, I. L; Blatt, R; et al. (March 4, 2016). "Realization of a scalable Shor algorithm". Science. 351 (6277): 1068–1070. arXiv:1507.08852. Bibcode:2016Sci...351.1068M. doi:10.1126/science.aad9480. PMID 26941315. S2CID 17426142.
  210. ^ September 29, 2016 Devitt, S. J (2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv:1605.05709. Bibcode:2016PhRvA..94c2329D. doi:10.1103/PhysRevA.94.032329. S2CID 119217150.
  211. ^ Alsina, D; Latorre, J. I (2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv:1605.04220. Bibcode:2016PhRvA..94a2314A. doi:10.1103/PhysRevA.94.012314. S2CID 119189277.
  212. ^ o'Malley, P. J. J; Babbush, R; Kivlichan, I. D; Romero, J; McClean, J. R; Barends, R; Kelly, J; Roushan, P; Tranter, A; Ding, N; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Fowler, A. G; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J. Y; Neeley, M; Neill, C; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T. C; Coveney, P. V; Love, P. J; Neven, H; et al. (July 18, 2016). "Scalable Quantum Simulation of Molecular Energies". Physical Review X. 6 (3): 031007. arXiv:1512.06860. Bibcode:2016PhRvX...6c1007O. doi:10.1103/PhysRevX.6.031007. S2CID 4884151.
  213. ^ November 2, 2016 Devitt, S. J; Greentree, A. D; Stephens, A. M; Van Meter, R (2016). "High-speed quantum networking by ship". Scientific Reports. 6: 36163. arXiv:1605.05709. Bibcode:2016NatSR...636163D. doi:10.1038/srep36163. PMC 5090252. PMID 27805001.
  214. ^ "D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order | D-Wave Systems". www.dwavesys.com. Retrieved January 26, 2017.
  215. ^ Lekitsch, B; Weidt, S; Fowler, A. G; Mølmer, K; Devitt, S. J; Wunderlich, C; Hensinger, W. K (February 1, 2017). "Blueprint for a microwave trapped ion quantum computer". Science Advances. 3 (2): e1601540. arXiv:1508.00420. Bibcode:2017SciA....3E1540L. doi:10.1126/sciadv.1601540. PMC 5287699. PMID 28164154.
  216. ^ Meredith Rutland Bauer (May 17, 2017). "IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet". Motherboard.
  217. ^ "Qudits: The Real Future of Quantum Computing?". IEEE Spectrum. June 28, 2017. Retrieved June 29, 2017.
  218. ^ "Microsoft makes play for next wave of computing with quantum computing toolkit". arstechnica.com. September 25, 2017. Retrieved October 5, 2017.
  219. ^ Knight, Will (October 10, 2017). "Quantum Inside: Intel Manufactures an Exotic New Chip". MIT Technology Review. Retrieved July 5, 2018.
  220. ^ "IBM Raises the Bar with a 50-Qubit Quantum Computer". MIT Technology Review. Retrieved December 13, 2017.
  221. ^ Hignett, Katherine (February 16, 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek. Retrieved February 17, 2018.
  222. ^ Liang, Q. Y; Venkatramani, A. V; Cantu, S. H; Nicholson, T. L; Gullans, M. J; Gorshkov, A. V; Thompson, J. D; Chin, C; Lukin, M. D; Vuletić, V (February 16, 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science. 359 (6377): 783–786. arXiv:1709.01478. Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMC 6467536. PMID 29449489.
  223. ^ "Scientists make major quantum computing breakthrough". Independent.co.uk. March 2018.
  224. ^ Giles, Martin (February 15, 2018). "Old-fashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. Retrieved July 5, 2018.
  225. ^ Emily Conover (March 5, 2018). "Google moves toward quantum supremacy with 72-qubit computer". Science News. Retrieved August 28, 2018.
  226. ^ Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. Retrieved July 12, 2018.
  227. ^ Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers. Retrieved July 5, 2018.
  228. ^ Nagata, K; Kuramitani, K; Sekiguchi, Y; Kosaka, H (August 13, 2018). "Universal holonomic quantum gates over geometric spin qubits with polarised microwaves". Nature Communications. 9 (3227): 3227. Bibcode:2018NatCo...9.3227N. doi:10.1038/s41467-018-05664-w. PMC 6089953. PMID 30104616.
  229. ^ Lenzini, Francesco (December 7, 2018). "Integrated photonic platform for quantum information with continuous variables". Science Advances. 4 (12): eaat9331. arXiv:1804.07435. Bibcode:2018SciA....4.9331L. doi:10.1126/sciadv.aat9331. PMC 6286167. PMID 30539143.
  230. ^ Ion-based commercial quantum computer is a first – Physics World
  231. ^ "IonQ".
  232. ^ 115th Congress (2018) (June 26, 2018). "H.R. 6227 (115th)". Legislation. GovTrack.us. Retrieved February 11, 2019. National Quantum Initiative Act
  233. ^ "President Trump has signed a $1.2 billon law to boost US quantum tech". MIT Technology Review. Retrieved February 11, 2019.
  234. ^ "US National Quantum Initiative Act passed unanimously". The Stack. December 18, 2018. Retrieved February 11, 2019.
  235. ^ Aron, Jacob (January 8, 2019). "IBM unveils its first commercial quantum computer". New Scientist. Retrieved January 8, 2019.
  236. ^ "IBM unveils its first commercial quantum computer". TechCrunch. Retrieved February 18, 2019.
  237. ^ Kokail, C; Maier, C; Van Bijnen, R; Brydges, T; Joshi, M. K; Jurcevic, P; Muschik, C. A; Silvi, P; Blatt, R; Roos, C; Zoller, P (May 15, 2019). "Self-verifying variational quantum simulation of lattice models". Science. 569 (7756): 355–360. arXiv:1810.03421. Bibcode:2019Natur.569..355K. doi:10.1038/s41586-019-1177-4. PMID 31092942. S2CID 53595106.
  238. ^ Unden, T.; Louzon, D.; Zwolak, M.; Zurek, W. H.; Jelezko, F. (October 1, 2019). "Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers". Physical Review Letters. 123 (140402): 140402. arXiv:1809.10456. Bibcode:2019PhRvL.123n0402U. doi:10.1103/PhysRevLett.123.140402. PMC 7003699. PMID 31702205.
  239. ^ Cho, A. (September 13, 2019). "Quantum Darwinism seen in diamond traps". Science. 365 (6458): 1070. Bibcode:2019Sci...365.1070C. doi:10.1126/science.365.6458.1070. PMID 31515367. S2CID 202567042.
  240. ^ "Google may have taken a step towards quantum computing 'supremacy' (updated)". Engadget. Retrieved September 24, 2019.
  241. ^ Porter, Jon (September 23, 2019). "Google may have just ushered in an era of 'quantum supremacy'". The Verge. Retrieved September 24, 2019.
  242. ^ Murgia, Waters, Madhumita, Richard (September 20, 2019). "Google claims to have reached quantum supremacy". Financial Times. Retrieved September 24, 2019.
  243. ^ Shankland, Stephen. "IBM's biggest-yet 53-qubit quantum computer will come online in October". CNET. Retrieved October 17, 2019.
  244. ^ Garisto, Daniel. "Quantum Computer Made from Photons Achieves a New Record". Scientific American. Retrieved June 30, 2021.
  245. ^ "Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers". April 16, 2020.
  246. ^ https://newsroom.unsw.edu.au/news/science-tech/noise-cancelling-headphones%E2%80%99-quantum-computers-international-collaboration#:~:text=A%20new%20project%20to%20develop,quantum%20building%20blocks%2C%20or%20qubits.&text=Morello%27s%20team%20was%20the%20first,information%20in%20a%20silicon%20chip.
  247. ^ "Cancelling quantum noise". May 23, 2019.
  248. ^ "Engineers crack 58-year-old puzzle on way to quantum breakthrough". March 12, 2020.
  249. ^ "Wiring the quantum computer of the future: A novel simple build with existing technology".
  250. ^ "Quantum researchers able to split one photon into three". phys.org. Retrieved March 9, 2020.
  251. ^ Chang, C. W. Sandbo; Sabín, Carlos; Forn-Díaz, P.; Quijandría, Fernando; Vadiraj, A. M.; Nsanzineza, I.; Johansson, G.; Wilson, C. M. (January 16, 2020). "Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity". Physical Review X. 10 (1): 011011. arXiv:1907.08692. Bibcode:2020PhRvX..10a1011C. doi:10.1103/PhysRevX.10.011011.
  252. ^ "Artificial atoms create stable qubits for quantum computing". phys.org. Retrieved March 9, 2020.
  253. ^ Leon, R. C. C.; Yang, C. H.; Hwang, J. C. C.; Lemyre, J. Camirand; Tanttu, T.; Huang, W.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Laucht, A.; Pioro-Ladrière, M.; Saraiva, A.; Dzurak, A. S. (February 11, 2020). "Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot". Nature Communications. 11 (1): 797. arXiv:1902.01550. Bibcode:2020NatCo..11..797L. doi:10.1038/s41467-019-14053-w. ISSN 2041-1723. PMC 7012832. PMID 32047151.
  254. ^ "Producing single photons from a stream of single electrons". phys.org. Retrieved March 8, 2020.
  255. ^ Hsiao, Tzu-Kan; Rubino, Antonio; Chung, Yousun; Son, Seok-Kyun; Hou, Hangtian; Pedrós, Jorge; Nasir, Ateeq; Éthier-Majcher, Gabriel; Stanley, Megan J.; Phillips, Richard T.; Mitchell, Thomas A.; Griffiths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Ford, Christopher J. B. (February 14, 2020). "Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode". Nature Communications. 11 (1): 917. arXiv:1901.03464. Bibcode:2020NatCo..11..917H. doi:10.1038/s41467-020-14560-1. ISSN 2041-1723. PMC 7021712. PMID 32060278.
  256. ^ "Scientists 'film' a quantum measurement". phys.org. Retrieved March 9, 2020.
  257. ^ Pokorny, Fabian; Zhang, Chi; Higgins, Gerard; Cabello, Adán; Kleinmann, Matthias; Hennrich, Markus (February 25, 2020). "Tracking the Dynamics of an Ideal Quantum Measurement". Physical Review Letters. 124 (8): 080401. arXiv:1903.10398. Bibcode:2020PhRvL.124h0401P. doi:10.1103/PhysRevLett.124.080401. PMID 32167322. S2CID 85501331.
  258. ^ "Scientists measure electron spin qubit without demolishing it". phys.org. Retrieved April 5, 2020.
  259. ^ Yoneda, J.; Takeda, K.; Noiri, A.; Nakajima, T.; Li, S.; Kamioka, J.; Kodera, T.; Tarucha, S. (March 2, 2020). "Quantum non-demolition readout of an electron spin in silicon". Nature Communications. 11 (1): 1144. arXiv:1910.11963. Bibcode:2020NatCo..11.1144Y. doi:10.1038/s41467-020-14818-8. ISSN 2041-1723. PMC 7052195. PMID 32123167.
  260. ^ "Engineers crack 58-year-old puzzle on way to quantum breakthrough". phys.org. Retrieved April 5, 2020.
  261. ^ Asaad, Serwan; Mourik, Vincent; Joecker, Benjamin; Johnson, Mark A. I.; Baczewski, Andrew D.; Firgau, Hannes R.; Mądzik, Mateusz T.; Schmitt, Vivien; Pla, Jarryd J.; Hudson, Fay E.; Itoh, Kohei M.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Laucht, Arne; Morello, Andrea (March 2020). "Coherent electrical control of a single high-spin nucleus in silicon". Nature. 579 (7798): 205–209. arXiv:1906.01086. Bibcode:2020Natur.579..205A. doi:10.1038/s41586-020-2057-7. PMID 32161384. S2CID 174797899.
  262. ^ Scientists create quantum sensor that covers entire radio frequency spectrum, Phys.org/United States Army Research Laboratory, 2020-03-19
  263. ^ Meyer, David H; Castillo, Zachary A; Cox, Kevin C; Kunz, Paul D (January 10, 2020). "Assessment of Rydberg atoms for wideband electric field sensing". Journal of Physics B: Atomic, Molecular and Optical Physics. 53 (3): 034001. arXiv:1910.00646. Bibcode:2020JPhB...53c4001M. doi:10.1088/1361-6455/ab6051. ISSN 0953-4075. S2CID 203626886.
  264. ^ "Researchers demonstrate the missing link for a quantum internet". phys.org. Retrieved April 7, 2020.
  265. ^ Bhaskar, M. K.; Riedinger, R.; Machielse, B.; Levonian, D. S.; Nguyen, C. T.; Knall, E. N.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D. D.; Lukin, M. D. (April 2020). "Experimental demonstration of memory-enhanced quantum communication". Nature. 580 (7801): 60–64. arXiv:1909.01323. Bibcode:2020Natur.580...60B. doi:10.1038/s41586-020-2103-5. PMID 32238931. S2CID 202539813.
  266. ^ Delbert, Caroline (April 17, 2020). "Hot Qubits Could Deliver a Quantum Computing Breakthrough". Popular Mechanics. Retrieved May 16, 2020.
  267. ^ "'Hot' qubits crack quantum computing temperature barrier - ABC News". www.abc.net.au. April 15, 2020. Retrieved May 16, 2020.
  268. ^ "Hot qubits break one of the biggest constraints to practical quantum computers". phys.org. Retrieved May 16, 2020.
  269. ^ Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. (April 2020). "Operation of a silicon quantum processor unit cell above one kelvin". Nature. 580 (7803): 350–354. arXiv:1902.09126. Bibcode:2020Natur.580..350Y. doi:10.1038/s41586-020-2171-6. PMID 32296190. S2CID 119520750.
  270. ^ "New discovery settles long-standing debate about photovoltaic materials". phys.org. Retrieved May 17, 2020.
  271. ^ Liu, Z.; Vaswani, C.; Yang, X.; Zhao, X.; Yao, Y.; Song, Z.; Cheng, D.; Shi, Y.; Luo, L.; Mudiyanselage, D.-H.; Huang, C.; Park, J.-M.; Kim, R. H. J.; Zhao, J.; Yan, Y.; Ho, K.-M.; Wang, J. "Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite ${\mathrm{CH". {{cite journal}}: Cite journal requires |journal= (help)_{3}{\mathrm{NH}}_{3}{\mathrm{PbI}}_{3}$ |journal=Physical Review Letters |date=16 April 2020 |volume=124 |issue=15 |pages=157401 |doi=10.1103/PhysRevLett.124.157401 }}
  272. ^ "Scientists demonstrate quantum radar prototype". phys.org. Retrieved June 12, 2020.
  273. ^ ""Quantum radar" uses entangled photons to detect objects". New Atlas. May 12, 2020. Retrieved June 12, 2020.
  274. ^ Barzanjeh, S.; Pirandola, S.; Vitali, D.; Fink, J. M. (May 1, 2020). "Microwave quantum illumination using a digital receiver". Science Advances. 6 (19): eabb0451. arXiv:1908.03058. Bibcode:2020SciA....6..451B. doi:10.1126/sciadv.abb0451. PMC 7272231. PMID 32548249.
  275. ^ "Scientists break the link between a quantum material's spin and orbital states". phys.org. Retrieved June 12, 2020.
  276. ^ Shen, L.; Mack, S. A.; Dakovski, G.; Coslovich, G.; Krupin, O.; Hoffmann, M.; Huang, S.-W.; Chuang, Y-D.; Johnson, J. A.; Lieu, S.; Zohar, S.; Ford, C.; Kozina, M.; Schlotter, W.; Minitti, M. P.; Fujioka, J.; Moore, R.; Lee, W-S.; Hussain, Z.; Tokura, Y.; Littlewood, P.; Turner, J. J. (May 12, 2020). "Decoupling spin-orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation". Physical Review B. 101 (20): 201103. arXiv:1912.10234. Bibcode:2020PhRvB.101t1103S. doi:10.1103/PhysRevB.101.201103.
  277. ^ "Photon discovery is a major step toward large-scale quantum technologies". phys.org. Retrieved June 14, 2020.
  278. ^ "Physicists develop integrated photon source for macro quantum-photonics". optics.org. Retrieved June 14, 2020.
  279. ^ Paesani, S.; Borghi, M.; Signorini, S.; Maïnos, A.; Pavesi, L.; Laing, A. (May 19, 2020). "Near-ideal spontaneous photon sources in silicon quantum photonics". Nature Communications. 11 (1): 2505. arXiv:2005.09579. Bibcode:2020NatCo..11.2505P. doi:10.1038/s41467-020-16187-8. PMC 7237445. PMID 32427911.
  280. ^ Lachmann, Maike D.; Rasel, Ernst M. (June 11, 2020). "Quantum matter orbits Earth". Nature. 582 (7811): 186–187. Bibcode:2020Natur.582..186L. doi:10.1038/d41586-020-01653-6. PMID 32528088.
  281. ^ "Quantum 'fifth state of matter' observed in space for first time". phys.org. Retrieved July 4, 2020.
  282. ^ Aveline, David C.; Williams, Jason R.; Elliott, Ethan R.; Dutenhoffer, Chelsea; Kellogg, James R.; Kohel, James M.; Lay, Norman E.; Oudrhiri, Kamal; Shotwell, Robert F.; Yu, Nan; Thompson, Robert J. (June 2020). "Observation of Bose–Einstein condensates in an Earth-orbiting research lab". Nature. 582 (7811): 193–197. Bibcode:2020Natur.582..193A. doi:10.1038/s41586-020-2346-1. PMID 32528092. S2CID 219568565.
  283. ^ "The smallest motor in the world". phys.org. Retrieved July 4, 2020.
  284. ^ "Nano-motor of just 16 atoms runs at the boundary of quantum physics". New Atlas. June 17, 2020. Retrieved July 4, 2020.
  285. ^ Stolz, Samuel; Gröning, Oliver; Prinz, Jan; Brune, Harald; Widmer, Roland (June 15, 2020). "Molecular motor crossing the frontier of classical to quantum tunneling motion". Proceedings of the National Academy of Sciences. 117 (26): 14838–14842. doi:10.1073/pnas.1918654117. ISSN 0027-8424. PMC 7334648. PMID 32541061.
  286. ^ "New techniques improve quantum communication, entangle phonons". phys.org. Retrieved July 5, 2020.
  287. ^ Schirber, Michael (June 12, 2020). "Quantum Erasing with Phonons". Physics. Retrieved July 5, 2020.
  288. ^ Chang, H.-S.; Zhong, Y. P.; Bienfait, A.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 17, 2020). "Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System". Physical Review Letters. 124 (24): 240502. arXiv:2005.12334. Bibcode:2020PhRvL.124x0502C. doi:10.1103/PhysRevLett.124.240502. PMID 32639797. S2CID 218889298.
  289. ^ Bienfait, A.; Zhong, Y. P.; Chang, H.-S.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 12, 2020). "Quantum Erasure Using Entangled Surface Acoustic Phonons". Physical Review X. 10 (2): 021055. arXiv:2005.09311. Bibcode:2020PhRvX..10b1055B. doi:10.1103/PhysRevX.10.021055.
  290. ^ "UChicago scientists discover way to make quantum states last 10,000 times longer". Argonne National Laboratory. August 13, 2020. Retrieved August 14, 2020.
  291. ^ Miao, Kevin C.; Blanton, Joseph P.; Anderson, Christopher P.; Bourassa, Alexandre; Crook, Alexander L.; Wolfowicz, Gary; Abe, Hiroshi; Ohshima, Takeshi; Awschalom, David D. (May 12, 2020). "Universal coherence protection in a solid-state spin qubit". Science. 369 (6510): 1493–1497. arXiv:2005.06082v1. Bibcode:2020Sci...369.1493M. doi:10.1126/science.abc5186. PMID 32792463. S2CID 218613907.
  292. ^ "Quantum computers may be destroyed by high-energy particles from space". New Scientist. Retrieved September 7, 2020.
  293. ^ "Cosmic rays may soon stymie quantum computing". phys.org. Retrieved September 7, 2020.
  294. ^ Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; Vasconcelos, Francisca; Kim, David K.; Melville, Alexander J.; Niedzielski, Bethany M.; Yoder, Jonilyn L.; Gustavsson, Simon; Formaggio, Joseph A.; VanDevender, Brent A.; Oliver, William D. (August 2020). "Impact of ionizing radiation on superconducting qubit coherence". Nature. 584 (7822): 551–556. arXiv:2001.09190. Bibcode:2020Natur.584..551V. doi:10.1038/s41586-020-2619-8. ISSN 1476-4687. PMID 32848227. S2CID 210920566. Retrieved September 7, 2020.
  295. ^ "Google conducts largest chemical simulation on a quantum computer to date". phys.org. Retrieved September 7, 2020.
  296. ^ Savage, Neil. "Google's Quantum Computer Achieves Chemistry Milestone". Scientific American. Retrieved September 7, 2020.
  297. ^ Google AI Quantum Collaborators (August 28, 2020). "Hartree-Fock on a superconducting qubit quantum computer". Science. 369 (6507): 1084–1089. arXiv:2004.04174. Bibcode:2020Sci...369.1084.. doi:10.1126/science.abb9811. ISSN 0036-8075. PMID 32855334. S2CID 215548188. Retrieved September 7, 2020.{{cite journal}}: CS1 maint: uses authors parameter (link)
  298. ^ "Multi-user communication network paves the way towards the quantum internet". Physics World. September 8, 2020. Retrieved October 8, 2020.
  299. ^ Joshi, Siddarth Koduru; Aktas, Djeylan; Wengerowsky, Sören; Lončarić, Martin; Neumann, Sebastian Philipp; Liu, Bo; Scheidl, Thomas; Lorenzo, Guillermo Currás; Samec, Željko; Kling, Laurent; Qiu, Alex; Razavi, Mohsen; Stipčević, Mario; Rarity, John G.; Ursin, Rupert; Ahmed, Kazi Saabique (September 1, 2020). "A trusted node–free eight-user metropolitan quantum communication network". Science Advances. 6 (36): eaba0959. arXiv:1907.08229. Bibcode:2020SciA....6..959J. doi:10.1126/sciadv.aba0959. ISSN 2375-2548. PMC 7467697. PMID 32917585. CC-BY icon.svg Text and images are available under a Creative Commons Attribution 4.0 International License.
  300. ^ "Quantum entanglement realized between distant large objects". phys.org. Retrieved October 9, 2020.
  301. ^ Thomas, Rodrigo A.; Parniak, Michał; Østfeldt, Christoffer; Møller, Christoffer B.; Bærentsen, Christian; Tsaturyan, Yeghishe; Schliesser, Albert; Appel, Jürgen; Zeuthen, Emil; Polzik, Eugene S. (September 21, 2020). "Entanglement between distant macroscopic mechanical and spin systems". Nature Physics. 17 (2): 228–233. arXiv:2003.11310. doi:10.1038/s41567-020-1031-5. ISSN 1745-2481. S2CID 214641162. Retrieved October 9, 2020.
  302. ^ "Chinese team unveils exceedingly fast quantum computer". China Daily. December 4, 2020. Retrieved December 5, 2020.
  303. ^ "China Stakes Its Claim to Quantum Supremacy". Wired. December 3, 2020. Retrieved December 5, 2020.
  304. ^ Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng; Yang, Xiao-Yan; Zhang, Wei-Jun; Li, Hao; Li, Yuxuan; Jiang, Xiao; Gan, Lin; Yang, Guangwen; You, Lixing; Wang, Zhen; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei (December 18, 2020). "Quantum computational advantage using photons". Science. 370 (6523): 1460–1463. arXiv:2012.01625. Bibcode:2020Sci...370.1460Z. doi:10.1126/science.abe8770. ISSN 0036-8075. PMID 33273064. S2CID 227254333. Retrieved January 22, 2021.
  305. ^ "Scientists Achieve Direct Counterfactual Quantum Communication For The First Time". Futurism. Retrieved January 16, 2021.
  306. ^ "Elementary particles part ways with their properties". phys.org. Retrieved January 16, 2021.
  307. ^ McRae, Mike. "In a Mind-Bending New Paper, Physicists Give Schrodinger's Cat a Cheshire Grin". ScienceAlert. Retrieved January 16, 2021.
  308. ^ Aharonov, Yakir; Rohrlich, Daniel (December 21, 2020). "What Is Nonlocal in Counterfactual Quantum Communication?". Physical Review Letters. 125 (26): 260401. arXiv:2011.11667. Bibcode:2020PhRvL.125z0401A. doi:10.1103/PhysRevLett.125.260401. PMID 33449741. S2CID 145994494. Retrieved January 16, 2021. CC-BY icon.svg Available under CC BY 4.0.
  309. ^ "The world's first integrated quantum communication network". phys.org. Retrieved February 11, 2021.
  310. ^ Chen, Yu-Ao; Zhang, Qiang; Chen, Teng-Yun; Cai, Wen-Qi; Liao, Sheng-Kai; Zhang, Jun; Chen, Kai; Yin, Juan; Ren, Ji-Gang; Chen, Zhu; Han, Sheng-Long; Yu, Qing; Liang, Ken; Zhou, Fei; Yuan, Xiao; Zhao, Mei-Sheng; Wang, Tian-Yin; Jiang, Xiao; Zhang, Liang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Lu, Chao-Yang; Shu, Rong; Wang, Jian-Yu; Li, Li; Liu, Nai-Le; Xu, Feihu; Wang, Xiang-Bin; Peng, Cheng-Zhi; Pan, Jian-Wei (January 2021). "An integrated space-to-ground quantum communication network over 4,600 kilometres". Nature. 589 (7841): 214–219. Bibcode:2021Natur.589..214C. doi:10.1038/s41586-020-03093-8. ISSN 1476-4687. PMID 33408416. S2CID 230812317. Retrieved February 11, 2021.
  311. ^ "Error-protected quantum bits entangled for the first time". phys.org. Retrieved August 30, 2021.
  312. ^ Erhard, Alexander; Poulsen Nautrup, Hendrik; Meth, Michael; Postler, Lukas; Stricker, Roman; Stadler, Martin; Negnevitsky, Vlad; Ringbauer, Martin; Schindler, Philipp; Briegel, Hans J.; Blatt, Rainer; Friis, Nicolai; Monz, Thomas (January 2021). "Entangling logical qubits with lattice surgery". Nature. 589 (7841): 220–224. arXiv:2006.03071. Bibcode:2021Natur.589..220E. doi:10.1038/s41586-020-03079-6. ISSN 1476-4687. PMID 33442044. S2CID 219401398. Retrieved August 30, 2021.
  313. ^ "Using drones to create local quantum networks". phys.org. Retrieved February 12, 2021.
  314. ^ Liu, Hua-Ying; Tian, Xiao-Hui; Gu, Changsheng; Fan, Pengfei; Ni, Xin; Yang, Ran; Zhang, Ji-Ning; Hu, Mingzhe; Guo, Jian; Cao, Xun; Hu, Xiaopeng; Zhao, Gang; Lu, Yan-Qing; Gong, Yan-Xiao; Xie, Zhenda; Zhu, Shi-Ning (January 15, 2021). "Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes". Physical Review Letters. 126 (2): 020503. Bibcode:2021PhRvL.126b0503L. doi:10.1103/PhysRevLett.126.020503. PMID 33512193. S2CID 231761406. Retrieved February 12, 2021.
  315. ^ "Physicists develop record-breaking source for single photons". phys.org. Retrieved February 12, 2021.
  316. ^ Tomm, Natasha; Javadi, Alisa; Antoniadis, Nadia Olympia; Najer, Daniel; Löbl, Matthias Christian; Korsch, Alexander Rolf; Schott, Rüdiger; Valentin, Sascha René; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John (January 28, 2021). "A bright and fast source of coherent single photons". Nature Nanotechnology. 16 (4): 399–403. arXiv:2007.12654. Bibcode:2021NatNa..16..399T. doi:10.1038/s41565-020-00831-x. ISSN 1748-3395. PMID 33510454. S2CID 220769410. Retrieved February 12, 2021.
  317. ^ "Quantum systems learn joint computing". phys.org. Retrieved March 7, 2021.
  318. ^ Daiss, Severin; Langenfeld, Stefan; Welte, Stephan; Distante, Emanuele; Thomas, Philip; Hartung, Lukas; Morin, Olivier; Rempe, Gerhard (February 5, 2021). "A quantum-logic gate between distant quantum-network modules". Science. 371 (6529): 614–617. arXiv:2103.13095. Bibcode:2021Sci...371..614D. doi:10.1126/science.abe3150. ISSN 0036-8075. PMID 33542133. S2CID 231808141. Retrieved March 7, 2021.
  319. ^ "We could detect alien civilizations through their interstellar quantum communication". phys.org. Retrieved May 9, 2021.
  320. ^ Hippke, Michael (April 13, 2021). "Searching for Interstellar Quantum Communications". The Astronomical Journal. 162 (1): 1. arXiv:2104.06446. Bibcode:2021AJ....162....1H. doi:10.3847/1538-3881/abf7b7. S2CID 233231350. Retrieved May 9, 2021.
  321. ^ "Vibrating drumheads are entangled quantum mechanically". Physics World. May 17, 2021. Retrieved June 14, 2021.
  322. ^ Lépinay, Laure Mercier de; Ockeloen-Korppi, Caspar F.; Woolley, Matthew J.; Sillanpää, Mika A. (May 7, 2021). "Quantum mechanics–free subsystem with mechanical oscillators". Science. 372 (6542): 625–629. arXiv:2009.12902. Bibcode:2021Sci...372..625M. doi:10.1126/science.abf5389. ISSN 0036-8075. PMID 33958476. S2CID 221971015. Retrieved June 14, 2021.
  323. ^ Kotler, Shlomi; Peterson, Gabriel A.; Shojaee, Ezad; Lecocq, Florent; Cicak, Katarina; Kwiatkowski, Alex; Geller, Shawn; Glancy, Scott; Knill, Emanuel; Simmonds, Raymond W.; Aumentado, José; Teufel, John D. (May 7, 2021). "Direct observation of deterministic macroscopic entanglement". Science. 372 (6542): 622–625. arXiv:2004.05515. Bibcode:2021Sci...372..622K. doi:10.1126/science.abf2998. ISSN 0036-8075. PMID 33958475. S2CID 233872863. Retrieved June 14, 2021.
  324. ^ "TOSHIBA ANNOUNCES BREAKTHROUGH IN LONG DISTANCE QUANTUM COMMUNICATION". Toshiba. June 12, 2021. Retrieved June 12, 2021.
  325. ^ "Researchers create an 'un-hackable' quantum network over hundreds of kilometers using optical fiber". ZDNet. June 8, 2021. Retrieved June 12, 2021.
  326. ^ Pittaluga, Mirko; Minder, Mariella; Lucamarini, Marco; Sanzaro, Mirko; Woodward, Robert I.; Li, Ming-Jun; Yuan, Zhiliang; Shields, Andrew J. (July 2021). "600-km repeater-like quantum communications with dual-band stabilization". Nature Photonics. 15 (7): 530–535. Bibcode:2021NaPho..15..530P. doi:10.1038/s41566-021-00811-0. ISSN 1749-4893. S2CID 229923162. Retrieved July 19, 2021.
  327. ^ "Quantum computer is smallest ever, claim physicists". Physics World. July 7, 2021. Retrieved July 11, 2021.
  328. ^ Pogorelov, I.; Feldker, T.; Marciniak, Ch. D.; Postler, L.; Jacob, G.; Krieglsteiner, O.; Podlesnic, V.; Meth, M.; Negnevitsky, V.; Stadler, M.; Höfer, B.; Wächter, C.; Lakhmanskiy, K.; Blatt, R.; Schindler, P.; Monz, T. (June 17, 2021). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum. 2 (2): 020343. arXiv:2101.11390. Bibcode:2021PRXQ....2b0343P. doi:10.1103/PRXQuantum.2.020343. S2CID 231719119. Retrieved July 11, 2021.
  329. ^ "Harvard-led physicists take big step in race to quantum computing". Scienmag: Latest Science and Health News. July 9, 2021. Retrieved August 14, 2021.
  330. ^ Ebadi, Sepehr; Wang, Tout T.; Levine, Harry; Keesling, Alexander; Semeghini, Giulia; Omran, Ahmed; Bluvstein, Dolev; Samajdar, Rhine; Pichler, Hannes; Ho, Wen Wei; Choi, Soonwon; Sachdev, Subir; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (July 2021). "Quantum phases of matter on a 256-atom programmable quantum simulator". Nature. 595 (7866): 227–232. arXiv:2012.12281. Bibcode:2021Natur.595..227E. doi:10.1038/s41586-021-03582-4. ISSN 1476-4687. PMID 34234334. S2CID 229363764.
  331. ^ Scholl, Pascal; Schuler, Michael; Williams, Hannah J.; Eberharter, Alexander A.; Barredo, Daniel; Schymik, Kai-Niklas; Lienhard, Vincent; Henry, Louis-Paul; Lang, Thomas C.; Lahaye, Thierry; Läuchli, Andreas M. (July 7, 2021). "Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms". Nature. 595 (7866): 233–238. arXiv:2012.12268. Bibcode:2021Natur.595..233S. doi:10.1038/s41586-021-03585-1. ISSN 1476-4687. PMID 34234335. S2CID 229363462.
  332. ^ "China quantum computers are 1 million times more powerful Google's". TechHQ. October 28, 2021. Retrieved November 16, 2021.
  333. ^ "China's quantum computing efforts surpasses the West's again". Tech Wire Asia. November 3, 2021. Retrieved November 16, 2021.
  334. ^ "Canadian researchers achieve first quantum simulation of baryons". University of Waterloo. November 11, 2021. Retrieved November 12, 2021.
  335. ^ Atas, Yasar Y.; Zhang, Jinglei; Lewis, Randy; Jahanpour, Amin; Haase, Jan F.; Muschik, Christine A. (November 11, 2021). "SU(2) hadrons on a quantum computer via a variational approach". Nature Communications. 12 (1): 6499. Bibcode:2021NatCo..12.6499A. doi:10.1038/s41467-021-26825-4. ISSN 2041-1723. PMC 8586147. PMID 34764262.
  336. ^ "IBM creates largest ever superconducting quantum computer". New Scientist. Retrieved February 12, 2022.
  337. ^ "IBM Unveils Breakthrough 127-Qubit Quantum Processor". IBM Newsroom. Retrieved January 12, 2022.
  338. ^ "Europe's First Quantum Computer with More Than 5K Qubits Launched at Jülich". HPC Wire. January 18, 2022. Archived from the original on January 20, 2022. Retrieved January 20, 2022.
Retrieved from ""