5 ft and 1520 mm gauge railways

From Wikipedia, the free encyclopedia

Railways with a railway track gauge of 5 ft (1,524 mm) first appeared in the United Kingdom and the United States. This gauge became commonly known as Russian gauge because the government of the Russian Empire later chose it in 1843 — former areas of the Empire have inherited this standard.[1] In the 1960s Soviet Railways re-defined the gauge as 1,520 mm (4 ft 11+2732 in).[2]

The primary countries using the gauge include Russia, Mongolia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, Armenia, Azerbaijan, Georgia, Belarus, Moldova, Ukraine, Estonia, Latvia, Lithuania, and Finland.

With about 225,000 km (140,000 mi) of track, Russian gauge is the second-most common gauge in the world, after 1,435 mm (4 ft 8+12 in) standard gauge.[3]

History[]

Great Britain, 1748[]

In 1748, the Wylam waggonway was built to a 5 ft (1,524 mm) gauge for the shipment of coal from Wylam to Lemington down the River Tyne.[4]

In 1839, the Eastern Counties Railway was constructed; and in 1840, the Northern and Eastern Railway was built. In 1844, both lines were converted to 1,435 mm (4 ft 8+12 in) standard gauge. In 1903, the East Hill Cliff Railway, a funicular, was opened.

United States, 1827[]

5 ft (1,524 mm) gauge rail network in the Southern United States (1861)

In 1827, Horatio Allen, the chief engineer of the South Carolina Canal and Rail Road Company, prescribed the usage of 5 ft (1,524 mm) gauge and many other railroads in Southern United States adopted this gauge. The presence of several distinct gauges was a major disadvantage to the Confederate States of America during the American Civil War. In 1886, when around 11,500 miles (18,500 km) of 5 ft gauge track existed in the United States, almost all of the railroads using that gauge were converted to 4 ft 9 in (1,448 mm), the gauge then used by the Pennsylvania Railroad.[5]

Russian Empire, 1842[]

The first railway built in Russia was built in 1837 to 6 ft (1,829 mm) gauge for a 17 km long "experimental" line connecting Saint Petersburg with Tsarskoye Selo and Pavlovsk; the choice of gauge was influenced by Brunel's Great Western Railway which used 7 ft (2,134 mm). While of almost no practical importance the railway did demonstrate that this gauge was viable. The second railway in the Russian Empire was the Warsaw–Vienna railway (Congress Poland was then a part of the Empire) which was built to 1,435 mm (4 ft 8+12 in) Standard gauge and commenced construction in 1840.

For the building of Russia's first major railway, the Saint Petersburg–Moscow railway, engineer Pavel Melnikov hired as consultant George Washington Whistler, a prominent American railway engineer. Whistler recommended 5 ft (1,524 mm) on the basis that it was cheaper to construct than 6 ft (1,829 mm) while still offering the same advantages over 1,435 mm (4 ft 8+12 in) and that there was no need to worry about a break-of-gauge since it would never be connected to the Western European railways. Colonel P.P. Melnikov, of the Construction Commission overseeing the railway, recommended 6 ft (1,829 mm) following the example of the first railway and his study of US Railways. Following a report sent by Whistler the head of the Main Administration of Transport and Buildings recommended 5 ft (1,524 mm) and it was approved for the railway by Tsar Nicholas I on 14 February 1843. The next lines built were also approved with this gauge but it was not until March 1860 that a Government decree stated all major railways in Russia would be 5 ft (1,524 mm) gauge.

Not selected for military purposes[]

It is widely and incorrectly believed that Imperial Russia chose a gauge broader than standard gauge for military reasons, namely to prevent potential invaders from using the rail system. In 1841 a Russian army engineer wrote a paper stating that such a danger did not exist since railways could be made dysfunctional by retreating or diverting forces. Also the construction of the Warsaw–Vienna railway in 1,435 mm (4 ft 8+12 in) was precisely so it could be connected to the Western European network, in that case to reduce Poland's dependence on Prussia for transport. Finally for the Saint Petersburg–Moscow railway, which became the benchmark, the choice of track gauge was between 5 ft (1,524 mm) and the wider 6 ft (1,829 mm), not standard gauge 1,435 mm (4 ft 8+12 in).[6] However, it was just not selected with that in mind. When a railway has wooden sleepers, it is fairly easy to make the gauge narrower by removing the nails and placing them back at a narrower position, something Germany did during WWII. Destroying river bridges had a larger effect.[citation needed]

Expansion[]

The 5-foot gauge became the standard in the whole Russian Empire, and later Soviet Union.

Russian engineers used it also on the Chinese Eastern Railway, built in the closing years of the 19th century across the Northeastern China entry to provide a shortcut for the Trans-Siberian Railway to Vladivostok. The railway's southern branch, from Harbin via Changchun to Lüshun, used Russian gauge, but as a result of the Russo-Japanese War of 1904-1905 its southernmost section (from Changchun to Lüshun) was lost to the Japanese, who promptly regauged it to standard gauge (after using the narrow 3 ft 6 in (1,067 mm) for a short time during the war).[7] This formed a break of gauge between Changchun and Kuancheng (the station just to the north of Changchun, still in Russian hands),[8] until the rest of the former Chinese Eastern Railway was converted to standard gauge, too (probably in the 1930s).

Unlike in South Manchuria, the Soviet Union's reconquest of southern Sakhalin from Japan did not result in regauging of the railway system. Southern Sakhalin has continued with the original Japanese 1,067 mm (3 ft 6 in) gauge simultaneously with the Russian gauge railway, constructed in the northern part of the island in 1930-1932 (Moskalvo-Okha). The railway has no fixed connection with the mainland, and rail cars coming from the mainland port of Vanino on the Vanino-Kholmsk train ferry (operating since 1973) have their bogies changed in the Sakhalin port of Kholmsk.[9] In 2004 and 2008 plans were put forward to convert it to Russian gauge. The estimated completion date now is 2020.[10]

There were proposals in 2013 for north-south and east-west lines in Afghanistan, with construction to commence in 2013.[11]

Panama, 1850[]

The Panama Canal Railway, first constructed in ca. 1850, was built in 5 ft (1,524 mm) gauge. During canal construction (1904–1914), this same gauge was chosen for both construction traffic, canal operating services along the quays, and the newly routed commercial cross-isthmus railway. In 2000 the gauge for the commercial parallel railway was changed to 1,435 mm (4 ft 8+12 in) to use standard gauge equipment. The original gauge was chosen under the influence of the pre-conversion southern United States railway companies. Nowadays, the electric manoeuvering locomotives along the locks (mules) still use the 5 ft gauge that was laid during canal construction.

Finland, 1862[]

The first rail line in Finland was opened on 31 January 1862. As Finland was then the Grand Duchy of Finland, that is, a part of Imperial Russia, railways were built to the then Russian track gauge of 5 ft (1,524 mm),[12] although the railway systems were not connected until the bridge over River Neva was built in 1913.[13] Russian trains could not have run on Finnish tracks, because the Finnish loading gauge was narrower until the connection was made and the Finnish structure gauge widened.

Currently, there are two passenger services between Finland and Russia: Allegro, a Pendolino service on the Helsinki–St. Petersburg route, which crosses the border at Vainikkala, and Tolstoi, an overnight daily service between Helsinki and Moscow. For cargo traffic, there are four border crossings in active use.[14]

Technical[]

Redefinitions[]

In the late 1960s the gauge was redefined to 1,520 mm (4 ft 11+2732 in) in the Soviet Union.[3] At the same time the tolerances were tightened. As the running gear (wheelsets) of the rolling stock remained unaltered, the result was an increased speed and stability.[12] The conversion took place between 1970 and the beginning of the 1990s.[12]

In Finland, the Finnish State Railways kept the original definition of 1,524 mm (5 ft), even though they also have tightened the tolerances in a similar way. (Tolerance tighter than in the Soviet Union)

After its independence from the Soviet Union in 1991, Estonia redefined its track gauge to 1,524 mm, to match Finland's gauge.[15] The redefinition did not mean that all the railways in Estonia were changed immediately. It was more a rule change, so that all renovated old tracks and new railways would be construed in 1,524 mm gauge from then on. (See Track gauge in Estonia.)

Tolerances[]

Finland allows its gauge to be 1,520–1,529 mm on first class lines(classes 1AA and 1A, speed 220–160 km/h).[16]

If the gauge of the rolling stock is kept within certain limits, through running between 1,520 mm (4 ft 11+2732 in) railways and Finnish 1,524 mm (5 ft) railways is allowed. Since both 1,520 and 1,524 mm are within tolerances, the difference is tolerable. However, certain Finnish rolling stock do have a tendency to get stuck in Russian railyards due to the gauge difference.[citation needed]

The gauge of the international high-speed train Allegro (Sm6) between Helsinki and St. Petersburg is specified as 1,522 mm.[17] High-speed trains have less tolerance against gauge error, but this way, through running works well.

Loading gauge[]

The loading gauge, which defines the maximum height and width for railway vehicles and their loads, is larger for Russian gauge. This means that if a standard gauge railway, in Europe, shall be adapted for dual gauge, bridges must be rebuilt, double tracks must be placed further apart and the overhead wire must be raised. Or there must be restrictions on permitted rolling stock, which would restrict the benefit of such a railway. Dual gauge needs more width than single gauge. For double stacking on Russian gauge tracks, maximum height shall be 6.15 or 6.4 m (20 ft 2 in or 21 ft 0 in) above rails. For standard gauge railways, double stacking maximum height shall be 6.15 m (20 ft 2 in). For Indian gauge railways, double stacking maximum height shall be 7.1 m (23 ft 4 in), and minimum overhead wiring height shall be 6.5 or 6.75 m (21 ft 4 in or 22 ft 2 in) above rails. Minimum overhead wiring height for double stacking, standard gauge railways shall be 6.5 m (21 ft 4 in), and Indian gauge railways shall be 7.45 m (24 ft 5 in) above rails, respectively. This would apply to Russia and Europe (or North America), rather than to Russia and China (or Iran).

Current status[]

Network[]

Short sections of Russian gauge extend into Poland, eastern Slovakia, Sweden (at the Finnish border at Haparanda), and northern Afghanistan.[18]

There is an approximately 150 km long section in Hungary in the Záhony logistics area close to the Ukrainian border.[19]

During 2014 renovation a 32 km section of dual Standard/Russian gauge was installed between Tumangang and Rajin stations in the North Korea.[20]

The most western 1,520 mm gauge railway is the Polish LHS (Linia Hutnicza Szerokotorowa) from the Ukrainian border to the eastern end of the Silesian conurbation.

Use in rapid transit and light rail systems[]

Although broad gauge is quite rare on lighter railways and street tramways worldwide, almost all tramways in ex-USSR are broad gauge (according to terminology in use in these countries, gauges narrower than 1,520 mm (4 ft 11+2732 in) are considered to be narrow). Many tramway networks initially built to narrow gauges (750 mm or 2 ft 5+12 in or 1,000 mm or 3 ft 3+38 in metre gauge) were converted to broad gauge. As of 2015, only a few out of more than sixty tram systems in Russia are not broad gauge: 1,000 mm in Kaliningrad and Pyatigorsk, 1,435 mm (4 ft 8+12 in) in Rostov-on-Don; there are also two tram systems in and around Yevpatoria that use 1,000 mm (3 ft 3+38 in) gauge. (Yevpatoria is located in Crimea, a territory disputed between Ukraine (as the Autonomous Republic of Crimea) and Russia (as the Republic of Crimea) since the March 2014 Crimean status referendum.) Finland's Helsinki trams and Latvia's Liepāja trams also use 1,000 mm (3 ft 3+38 in), and Estonia's Tallinn trams use similar 1,067 mm (3 ft 6 in). Warsaw's tramway system, constructed with 1525 mm gauge, was regauged to 1435 mm during post-WWII reconstruction.[21]

Underground urban rapid transit systems in former USSR and Finland, like the Moscow Metro, Saint Petersburg Metro, Kyiv Metro and the Helsinki Metro use Russian gauge (1,520 mm) or 1,524 mm gauge.

Similar gauges[]

Mixed between 1,520 mm (Russian gauge) and another similar gauge, result the bonus gauge is 7 ft 14 in (2,140 mm) (Brunel gauge).

These gauges cannot make 3-rail dual gauge with Russian gauge.

  • 1,676 mm (5 ft 6 in) Indian gauge
  • 1,668 mm (5 ft 5+2132 in) Iberian gauge
  • 1,600 mm (5 ft 3 in) Irish gauge
  • 1,435 mm (4 ft 8+12 in) standard gauge

These gauges are within tolerance.

  • 1,520 mm (Russian) gauge
  • 1,524 mm (5 ft) gauge

Dual gauge between Russian gauge and another similar gauge can make these bonus gauges.

  • 1,829 mm (6 ft)
  • 1,945 mm (6 ft 4+916 in)
  • 2,134 mm (7 ft)
  • 2,140 mm   7 ft 14 in (2,140 mm) (Brunel gauge)
  • 2,503 mm (8 ft 212 in) (The maximum bonus gauge from the 1,435 mm (4 ft 8+12 in) standard gauge gauntlet tracks).

Summary[]

Railways using 1,524 mm gauge[]

Country/territory Railway
China Chinese Eastern Railway (until 1930s); (proposed)
Estonia Rail transport in Estonia
Finland Rail transport in Finland
Former Soviet Union Prior to narrowing the gauge on the paper by 4 mm to 1,520 mm (4 ft 11+2732 in) and narrowing the tolerances; the railways adjusted only when needed or upgraded.
Japan Sakhalin-Hokkaido tunnel (proposed), with the break-of-gauge facilities between 5 ft (1,524 mm) and 1,435 mm (4 ft 8+12 in) in Northern Hokkaido.
Norway Proposed for and Nikel-Kirkenes-Rovaniemi lines.[22]
Panama Panama Canal Railway prior to conversion to standard gauge in 2000 to suit off-the-shelf supply.
Sweden Only a small freight yard in Haparanda. Used for exchanging cargo with Finnish trains.
United States The South, such as the Cartersville and Van Wert Railroad, the Cherokee Railroad, and the Western & Atlantic Railroad, until 31 May 1886. The Duquesne Incline and Monongahela Incline in Pittsburgh, Pennsylvania.

Railways using 1,520 mm gauge[]

Country/territory Railway
Afghanistan Rail transport in Afghanistan: The northern spur lines from CIS states. For Afghanistan's future network, 1,435 mm (4 ft 8+12 in) standard gauge for the western spur lines from Iran, and 1,676 mm (5 ft 6 in) Indian gauge are proposed.
Armenia Armenian Railways, South Caucasus Railway
Austria Košice-Vienna broad-gauge line (proposed)
Azerbaijan Azerbaijan Railways
Belarus Rail transport in Belarus
Bulgaria Only at Varna ferry terminal for train ferries to Odessa and Poti; dual gauge track for changing wagon bogies with standard gauge ones, and parallel transhipping tracks of 1,520 mm and 1,435 mm (4 ft 8+12 in) gauge.
China Several short stretches from Russia, Mongolia and Kazakhstan.
Georgia Georgian Railway
Germany Only at Sassnitz/Mukran ferry terminal for freight train ferries to Turku, Klaipėda and Baltijsk.
Hong Kong Peak Tram
Kazakhstan Kazakhstan Temir Zholy
Kyrgyzstan Kyrgyz Railways
Latvia Rail transport in Latvia
Lithuania Lithuanian Railways
Moldova CFM
Mongolia Rail transport in Mongolia
North Korea A 32-km stretch of 1,435/1,520 mm dual gauge between Tumangang and Rajin Stations.
Poland Almost exclusively on the Broad Gauge Metallurgy Line.
Russia Russian Railways
Slovakia Only on the "Širokorozchodná trať" (Uzhhorod - Maťovce - Haniska pri Košiciach) and from the border station of to Ukraine, both operated by ZSSK Cargo.
Tajikistan Rail transport in Tajikistan: Most in the West; Also 1,676 mm (5 ft 6 in) Indian gauge is proposed for the East.
Turkmenistan Railways in Turkmenistan
Ukraine Ukrainian Railways
Uzbekistan Uzbek Railways

See also[]

  • The Museum of the Moscow Railway

References[]

  1. ^ "Paravoz". Retrieved 2008-07-20.
  2. ^ "Broad Gauge Track-1520". Russian Railways. Retrieved 2014-06-12.
  3. ^ Jump up to: a b 1520 Strategic Partnership, About gauge 1520 Archived 7 October 2008 at the Wayback Machine, retrieved 2008-07-20.
  4. ^ "Waggonway & Railway". Retrieved 1 June 2016.
  5. ^ "The Days They Changed the Gauge". Retrieved 1 June 2016.
  6. ^ Haywood, R. M. (March 1969). "The Question of a Standard Gauge for Russian Railways, 1836-1860". Slavic Review. 28 (1): 72–80. doi:10.2307/2493039. JSTOR 2493039.
  7. ^ Luis Jackson, Industrial Commissioner of the Erie Railway. "Rambles in Japan and China." In Railway and Locomotive Engineering Archived 29 August 2016 at the Wayback Machine, vol. 26 (March 1913), pp. 91-92
  8. ^ "Provisional Convention ... concerning the junction of the Japanese and Russian Railways in Manchuria" - June 13, 1907. Endowment for International Peace (2009). Manchuria: Treaties and Agreements. BiblioBazaar, LLC. p. 108. ISBN 978-1-113-11167-8.
  9. ^ Сахалинская узкоколейная железная дорога (The narrow-gauge railways of Sakhalin) Archived 2013-11-15 at archive.today (in Russian)
  10. ^ "Railway a Gauge of Sakhalin's Future". The Moscow Times. 7 July 2008. Archived from the original on 9 September 2012. Retrieved 1 June 2016.
  11. ^ UK, DVV Media. "Afghan railway ambitions awarded funding". Retrieved 1 June 2016.
  12. ^ Jump up to: a b c "Historic reference". Archived from the original on 4 March 2016. Retrieved 1 June 2016.
  13. ^ Jussi Iltanen: Radan varrella (Karttakeskus 2009), page 390
  14. ^ Etla. Suomen ja Venäjän välinen liikenne vuosina 2020 ja 2030. https://www.etla.fi/julkaisut/suomen-ja-venajan-valinen-liikenne-vuosina-2020-ja-2030-ennuste-talouden-ja-liikenteen-kehityksesta/
  15. ^ Estonian railways today Archived 3 March 2016 at the Wayback Machine, p. 32
  16. ^ "Ratatekniset määräykset ja ohjeet" (PDF). Finnish Rail Administration. p. 56. Retrieved 9 Feb 2020. The nominal track gauge on the rail network 1,524 mm. The max tolerance range in lowest quality lines (class 6, max speed 50 km/h) is −7…+20 mm
  17. ^ "Allegro high speed Pendolino train at Finland station in St Petersburg". Alstom. 7 October 2010. Archived from the original on 7 July 2011. Retrieved 12 February 2011.
  18. ^ "Construction of Afghan railway launched". Railway Gazette International. 2010-01-27. Archived from the original on 2010-03-03.
  19. ^ "Megújult a széles nyomtávolságú vágány a záhonyi térségben". Retrieved 1 June 2016.
  20. ^ "Russia and North Korea sign deal to complete Khasan-Rajin railway reconstruction". www.railway-technology.com. Verdict Media Limited. 2013-06-17. Retrieved 2021-07-18.
  21. ^ "Tramwaje Warszawskie - rozwój sieci - lata 1990-2006".
  22. ^ Agreement on Arctic Railway Planning and Implementation: "What is happening today brings something new to the table"

External links[]

Retrieved from ""