Bisdehydrodoisynolic acid
Identifiers | |
---|---|
PubChem CID | |
Chemical and physical data | |
Formula | C18H20O3 |
Molar mass | 284.355 g·mol−1 |
3D model (JSmol) | |
show
InChI |
Bisdehydrodoisynolic acid (BDDA), as the (Z)-isomer ((Z)-BDDA), is a synthetic, nonsteroidal estrogen related to doisynolic acid that was never marketed.[1] It is one of the most potent estrogens known,[2][3] although it has more recently been characterized as a selective estrogen receptor modulator (SERM).[3][4] BDDA and other doisynolic acid derivatives display relatively low affinity accompanied by disproportionately high estrogenic potency in vivo,[5] which was eventually determined to be due to transformation into metabolites with greater estrogenic activity.[4] The drug was discovered in 1947 as a degradation product of the reaction of equilenin or dihydroequilenin with potassium hydroxide.[6] It is the seco-analogue of equilenin, while doisynolic acid is the seco-analogue of estrone.[7] These compounds, along with diethylstilbestrol, can be considered to be open-ring analogues of estradiol.[8] The methyl ether of BDDA, doisynoestrol, is also an estrogen, and in contrast to BDDA, has been marketed.[2][9]
See also[]
- Allenolic acid
- Carbestrol
- Fenestrel
- Methallenestril
- Stilbestrol
- Triphenylethylene
References[]
- ^ The Effects of (+)-Z-bisdehydrodoisynolic Acid on Diabetic Phenotype in Female Obese Zucker Rats. 2007. pp. 17–. ISBN 978-0-549-22172-2.
- ^ Jump up to: a b Johnson WS, Graber RP (1950). "The Stobbe Condensation with 6-Methoxy-2-propionylnaphthalene. A Synthesis of Bisdehydrodoisynolic Acid1". Journal of the American Chemical Society. 72 (2): 925–935. doi:10.1021/ja01158a075. ISSN 0002-7863.
- ^ Jump up to: a b Blickenstaff RT, Ghosh AC, Wolf GC (22 October 2013). Total Synthesis of Steroids: Organic Chemistry: A Series of Monographs. Elsevier Science. pp. 63–. ISBN 978-1-4832-1642-3.
- ^ Jump up to: a b Adler M, Hou Y, Sandrock P, Meyers CY, Winters TA, Banz WJ, Adler S (August 2006). "Derivatives of Z-bisdehydrodoisynolic acid provide a new description of the binding-activity paradox and selective estrogen receptor modulator activity". Endocrinology. 147 (8): 3952–60. doi:10.1210/en.2006-0316. PMID 16709609.
- ^ Banz WJ, Winters TA, Hou Y, Adler S, Meyers CY (December 1998). "Comparative effects of the selective estrogen receptor modulators (-)-, (+)- and (+/-)-Z bisdehydrodoisynolic acids on metabolic and reproductive parameters in male and female rats". Hormone and Metabolic Research. 30 (12): 730–6. doi:10.1055/s-2007-978968. PMID 9930631.
- ^ Pincus G, Thimann KV (2 December 2012). The Hormones V1: Physiology, Chemistry and Applications. Elsevier. pp. 364–366. ISBN 978-0-323-14206-9.
- ^ Journal of Scientific & Industrial Research. Council of Scientific & Industrial Research. 1984. p. 213.
- ^ Wermuth CG (2 May 2011). The Practice of Medicinal Chemistry. Academic Press. pp. 344–. ISBN 978-0-08-056877-5.
- ^ Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 465–. ISBN 978-1-4757-2085-3.
- Carboxylic acids
- Phenanthrenes
- Synthetic estrogens