Palladium(II) acetate

From Wikipedia, the free encyclopedia
Palladium(II) acetate
Palladium(II)-acetate-2D.png
Pd(OAc)2.jpg
Pd(OAc)2-trimer-from-xtal-Mercury-3D-balls-A.png
Polymeric-Pd(OAc)2-from-xtal-2004-Mercury-3D-balls-A.png
Names
IUPAC name
Palladium(II) acetate
Other names
Palladium diacetate
hexakis(acetato)tripalladium
bis(acetato)palladium
Identifiers
  • 3375-31-3 checkY
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.020.151 Edit this at Wikidata
RTECS number
  • AJ1900000
UNII
Properties
Pd(CH3COO)2
Molar mass 224.50 g/mol
Appearance Brown yellow solid
Density 2.19 g/cm3
Melting point 205 °C (401 °F; 478 K) decomposes
Boiling point decomposes
low
Structure
monoclinic
square planar
Dipole moment
0 D
Hazards
Main hazards considered nonhazardous
Safety data sheet [1]
R-phrases (outdated) 41
S-phrases (outdated) 24/25
Related compounds
Other anions
Palladium(II) chloride
Other cations
Platinum(II) acetate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY  (what is checkY☒N ?)
Infobox references

Palladium(II) acetate is a chemical compound of palladium described by the formula [Pd(O2CCH3)2]n, abbreviated [Pd(OAc)2]n. It is more reactive than the analogous platinum compound. Depending on the value of n, the compound is soluble in many organic solvents and is commonly used as a catalyst for organic reactions.

Structure[]

With a 1:2 stoichiometric ratio of palladium atoms and acetate ligands, the compound exists as molecular and polymeric forms with the trimeric form being the dominant form in the solid state and in solution. Pd achieves approximate square planar coordination in both forms.

As prepared by Geoffrey Wilkinson and coworkers in 1965 and later characterized by Skapski and Smart in 1970 by single crystal X-ray diffraction, palladium(II) acetate is a red-brown solid that crystallizes as monoclinic plates. It has a trimeric structure, consisting of an equilateral triangle of Pd atoms each pair of which is bridged with two acetate groups in a butterfly conformation.[1][2]

Palladium(II) acetate can also be prepared as a pale pink form. According to X-ray powder diffraction, this form is polymeric.[3]

Preparation[]

Palladium acetate, in trimeric form, can be prepared by treating palladium sponge with a mixture of acetic acid and nitric acid. An excess of palladium sponge metal or nitrogen gas flow are required to prevent contamination by the mixed nitrito-acetate (Pd3(OAc)5NO2).[4][5]

Pd + 4 HNO3 → Pd(NO3)2 + 2 NO2 + 2 H2O
Pd(NO3)2 + 2 CH3COOH → Pd(O2CCH3)2 + 2 HNO3

Relative to the trimeric acetate, the mixed nitrate-acetate variant has different solubility and catalytic activity. Preventing, or controlling for the amount of, this impurity can be an important aspect for reliable use of palladium(II) acetate.[6]

Palladium(II) propionate is prepared analogously; other carboxylates are prepared by treating palladium(II) acetate with the appropriate carboxylic acid.[1] Likewise, palladium(II) acetate can be prepared by treating other palladium(II) carboxylates with acetic acid. This ligand exchange starting with a purified other carboxylate is an alternative way to synthesize palladium(II) acetate free from the nitro contaminant.[6]

Palladium(II) acetate is prone to reduction to Pd(0) in the presence of reagents which can undergo beta-hydride elimination such as primary and secondary alcohols as well as amines. When warmed with alcohols, or on prolonged boiling with other solvents, palladium(II) acetate decomposes to palladium.[1]

Catalysis[]

Palladium acetate is a catalyst for many organic reactions, especially alkenes, dienes, and alkyl, aryl, and vinyl halides to form reactive adducts.[7]

Reactions catalyzed by palladium(II) acetate:

RC6H4Br + Si2(CH3)6 → RC6H4Si(CH3)3 + Si(CH3)3Br

Pd(O2CCH3)2 is compatible with the electronic properties of aryl bromides, and unlike other methods of synthesis, this method does not require high pressure equipment.[13]

Precursor to other Pd compounds[]

Palladium acetate is used to produce other palladium(II) compounds. For example, phenylpalladium acetate, used to isomerize allyl alcohols to aldehydes, is prepared by the following reaction:[14]

Hg(C6H5)(OAc) + Pd(OAc)2 → Pd(C6H5)(OAc) + Hg(OAc)2

Palladium(II) acetate reacts with acetylacetone (the "acac" ligand) to produce Pd(acac)2.

Light or heat reduce palladium acetate to give thin layers of palladium and can produce nanowires and colloids.[4]

See also[]

References[]

  1. ^ Jump up to: a b c T. A. Stephenson; S. M. Morehouse; A. R. Powell; J. P. Heffer; G. Wilkinson (1965). "667. Carboxylates of palladium, platinum, and rhodium, and their adducts". Journal of the Chemical Society (Resumed): 3632. doi:10.1039/jr9650003632.
  2. ^ Skapski, A C.; M. L. Smart (1970). "The Crystal Structure of Trimeric Palladium(II) Acetate". J. Chem. Soc. D (11): 658b–659. doi:10.1039/C2970000658b.
  3. ^ Kirik, S.D.; Mulagaleev, S.F.; Blokhin, A.I. (2004). "[Pd(CH 3 COO) 2 ] n from X-ray powder diffraction data". Acta Crystallogr. C. 60 (9): m449–m450. doi:10.1107/S0108270104016129. PMID 15345831.
  4. ^ Jump up to: a b Bakhmutov, V. I.; Berry, J. F.; Cotton, F. A.; Ibragimov, S.; Murillo, C. A. (2005). "Non-Trivial Behavior of Palladium(II) Acetate". Dalton Transactions (11): 1989–1992. doi:10.1039/b502122g. PMID 15909048.
  5. ^ "High Purity Homogeneous Catalyst" (PDF). Engelhard. September 2005. Archived from the original (PDF) on 17 March 2006. Retrieved 24 February 2006.
  6. ^ Jump up to: a b Ritter, Stephen K. (May 2, 2016). "Chemists introduce a user's guide for palladium acetate". Chemical & Engineering News. 94 (18): 20–21. doi:10.1021/cen-09418-scitech1.
  7. ^ Suggs, J W. "Palladium: Organometallic Chemistry." Encyclopedia of Inorganic Chemistry. Ed. R B. King. 8 vols. Chichester: Wiley, 1994.
  8. ^ Keary M. Engle, Navid Dastbaravardeh, Peter S. Thuy-Boun, Dong-Hui Wang, Aaron C. Sather, Jin-Quan Yu (2015). "Ligand-Accelerated ortho-C-H Olefination of Phenylacetic Acids". Org. Synth. 92: 58–75. doi:10.15227/orgsyn.092.0058. PMC 4936495. PMID 27397943.CS1 maint: uses authors parameter (link)
  9. ^ Nikitin, Kirill V.; Andryukhova, N.P.; Bumagin, N.A.; Beletskaya, I.P. (1991). "Synthesis of Aryl Esters by Pd-catalysed Carbonylation of Aryl Iodides". Mendeleev Communications. 1 (4): 129–131. doi:10.1070/MC1991v001n04ABEH000080.
  10. ^ Basu, B., Satadru J., Mosharef H. B., and Pralay D. (2003). "A Simple Protocol for the Direct Reductive Amination of Aldehydes and Ketones Using Potassium Formate and Catalytic Palladium Acetate". ChemInform. 34 (30): 555–557. doi:10.1002/chin.200330069.CS1 maint: multiple names: authors list (link)
  11. ^ Linli He, Shawn P. Allwein, Benjamin J. Dugan, Kyle W. Knouse, Gregory R. Ott, Craig A. Zificsak (2016). "Synthesis of α-Carboline". Org. Synth. 93: 272. doi:10.15227/orgsyn.093.0272.CS1 maint: uses authors parameter (link)
  12. ^ "Buchwald-Hartwig Cross Coupling Reaction". Organic Chemistry Portal.
  13. ^ Gooben, L J. "Research Area "New Pd-Catalyzed Cross-Coupling Reactions"" 28 Feb. 2006<http://www.mpi-muelheim.mpg.de/kofo/bericht2002/pdf/2.1.8_gossen.pdf> Archived July 12, 2007, at the Wayback Machine.
  14. ^ Richard F. Heck. "Aldehydes from Allylic Alcohols and Phenylpalladium Acetate: 2-Methyl-3-Phenylpropionaldehyde". Organic Syntheses.; Collective Volume, 6, p. 815
  15. ^ Herrmann, W. A.; Brossmer, C.; Reisinger, C.-P.; Riermeier, T. H.; Öfele, K.; Beller, M. (1997). "Palladacycles: Efficient New Catalysts for the Heck Vinylation of Aryl Halides". Chemistry – A European Journal. 3 (8): 1357–1364. doi:10.1002/chem.19970030823.
Retrieved from ""