Rotzo Formation

From Wikipedia, the free encyclopedia
Rotzo Formation
Stratigraphic range: Early-Late Pliensbachian
~188–183 Ma
Affioramento calcari02.jpg
Exposed layer
TypeGeological formation
Unit of
Sub-unitsTovel Member[1]
UnderliesCalcari Grigi di Noriglio Formation
Overlies
Lithology
PrimaryLagoonal or restricted shallow subtidal; lithified, gray, silty marl. Paralic; ooidal, gray grainstone and bioturbated, intraclastic, ooidal, gray wackestone. Subtidal flat with mud banks and sand deposits.[2]
OtherLight-grey to yellowish-grey packstone, with oolites, bioclasts, algal lumps, pellets, dasycladacean algae, foraminifera, lituolids, and miliolids
Location
Coordinates45°42′N 11°06′E / 45.7°N 11.1°E / 45.7; 11.1Coordinates: 45°42′N 11°06′E / 45.7°N 11.1°E / 45.7; 11.1
Approximate paleocoordinates32°06′S 16°42′E / 32.1°S 16.7°E / -32.1; 16.7
RegionVeneto
Country Italy
Type section
Named forRotzo
Rotzo Formation is located in Italy
Rotzo Formation
Rotzo Formation (Italy)

The Rotzo Formation is a geological formation in Italy, dating to roughly between 189 and 183 million years ago and covering the Pliensbachian stage of the Jurassic Period in the Mesozoic Era.[3] Has been traditionally classified as a Sinemurian-Pliensbachian Formation, but a large and detailed dataset of isotopic 13C and 87Sr/86Sr data, estimated the Rotzo Formation to span only over the whole Pliensbachian.[4] The Rotzo Formation represented the , being located over the Trento Platform and surrounded by the (marginal calcarenitic bodies), the (condensed deposits and emerged lands), the and (open marine), and finally towards the south, deep water deposits of the Adriatic Basin.[5]

Fossil prosauropod tracks have been reported from the formation.[6] This formation was deposited within a tropical lagoon environment which was protected by oolitic shoals and bars from the open deep sea located to the east () and towards the west (). It is characterized by a rich paleontological content. It is notable mostly thanks to its great amount of big aberrant bivalves, among which is the genus , described in the second half of the nineteenth century. The unusual shape of Lithiotis and shells, extremely elongated and narrow, characterized by a spoon-like body space placed in a high position, rarely preserved, seems to suggest their adaptation to soft and muddy bottoms with a high sedimentation rate.[7] The Bellori outcrop displays about 20 m of limestones with intercalated clays and marls rich in organic matter and sometimes fossil wood (coal) and amber. The limestones are well stratified, with beds 10 cm to more than one metre thick, whereas the clayey levels range between 3 and 40 cm in thickness.[8][9]

Invertebrata[]

Microfossils of the Rotzo Formation consist of benthic foraminifera, , Ostracoda and coprolites. Foraminifera are mainly benthic agglutinated species belonging to the superfamily (suborder Textulariina), while lamellar and porcellaneous-walled species are very rare.[10] The bivalve Opisoma excavatum is very common.[11]

Ichnofossils[]

In the Western Venetian Prealps a shallow-water, oceanic carbonate platform system, the Trento platform, developed on the Early Jurassic, producing a large succession of massive to well-bedded white Limestones, several 100 m thick that are part of the Calcari Grigi Group, where the Rotzo Formation is the Upper Member.[12] On the local limestone of the Rotzo Formation deep burrowing is a very common type of biogenic activity, as is shown due to the presence of a large characteristic network of burrows which reach down to the lagoonal, marly-clayey assigned strata, suggesting intense bioturbation by large unknown organisms, perhaps giant decapod crustaceans (Probably members of the family Erymidae), although, the burrows found are not closely related to the ones of Shrimps or other decapods, but resemble those of Stomatopoda and Malacostraca.[12] Other includes abandoned burrows, vertical biogenic action and infilling on the sea substrate.[12]

Genus Species Stratigraphic position Material Notes Images

Thalassinoides[13][14][15][12]

  • Thalassinoides suevicus
  • Thalassinoides? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Thalassinoides suevicus has been found on mostly of the middle-upper part of the Rotzo Formation associated with muddy deposits. It ranges from 2–5 cm to 6–10 cm and the larger ones from 10 to 16 cm.[13] Y-shaped tunnels that seen in cross-section reveal circular walls made of pelletoidal grainstone, being more probably a fodichnia of a burrowing animal.[15] A few ichnofossils include simple cylindrical tubes up to 80 cm in length, that resemble crustacean described in Seychelles.[15]

Thalassinoides

Ophiomorpha[13][14][15][12]

  • Ophiomorpha irregulaire
  • cf. Ophiomorpha nodosa
  • Ophiomorpha isp. A
  • Ophiomorpha ? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Two major types of Ophiomorpha where recovered, a smaller one from 2–4 cm in size and the larger one from 5–15 cm in diameter.[15] They are complex burrow systems lined with pelletoidal sediments generally infilled by coarse-grained detritus.[13] Specimens Seems partly destroyed by weathering.[14]

Ophiomorpha

Chondrites[13][14][15][12]

  • Chondrites isp.

Campomolon, Valbona

Burrowing and track Ichnofossils

In the Rotzo Formation Ophiomorpha irregulaire local specimens the walls are extensively reworked by small, secondary burrowers assigned to the ichnogenus Chondrites.[14] Interpreted as the feeding burrow of a sediment-ingesting animal.

Chondrites

Skolithos[12]

  • Skolithos isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skeletal debris

Ichnofossils done by organisms advancing along the bottom surface. Very narrow, vertical or subvertical, slightly winding unlined shafts filled with mud. Locally, post hurricane burrows are found in fine-grained tempestite beds and muddy layers and they are Domichnia, Fodinichnia and .[12]

Skolithos

[12]

  • Glossifungites isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skeletal debris

On the local waters during the Lower Jurassic, water motion due to the hurricane action truncated many mounds causing changes on the deposition on the sea-floor and inducing various phases of substrate infillings with carbonate mud, fine-to coarse-grained skeletal debris and fecal pellets.[12] They are assigned to Priapulida, Serpulidae, Siboglinidae, Sabellidae or even Oweniidae.

[12]

  • Chomatichnus wegberensis

Campomolon, Valbona

Vertical burrows with preserved entrances

It is difficult to suggest this ichnogenus because on the Formation the vertical and lined burrow with a deep central crater typical of Chomatichnus is never preserved.[12] It resemble described burrows of endobenthic thalassinidean decapods, specially Callianassa subterranea of modern North Sea, Callianassa major, Callianassa californensis or Upogebia pugettensis.[12] It can be also Serpulidae Polychaetan burrows.

Asteriacites[16]

  • Asteriacites lumbricalis
  • Asteriacites isp.

Coste dell’Anglone dinosaur ichnosite

Star-shaped impressions

A ichnogenus that represents the resting trace resting activity of sea stars (Asteroidea) and brittle stars (Ophiuroidea).[16] The recovered from the Rotzo formation are probably from specimens trapped on tidal changes.[16]

Bivalves[]

The Rotzo Formation is know mostly due to its massive bivalve associations of the genera , and that extended all along the Pliensbachian Trento Platform forming mass accumulations of specimens that formed Reef-Like structures.[17] This fauna appeared after the early Pliensbachian C-cycle perturbation, that triggered the diffusion of the Lithiotis Fauna, noted on the rapid widespread of this biota after the event layers.[17] All of the genera related with this fauna appeared on the lower Jurassic, and all but one became extinct before the Middle Jurassic.[18] This "Reefs" had an strong zonation, starting with the bivalves and , restricted to intertidal and shallow-subtidal facies. is limited to lagoonal subtidal facies and even in some low-oxygen environments. Finally and are found in subtidal facies, constructing buildups.[18] This sections formed various kinds of ecosystems on the Trento platform, where it appeared in branched corals filled with (), Domal corals (), tubular corals, corals, unidentified colonial corals, regular echinoid debris, sponges, and the solitary coral sp., with also aggregated snail shells.[18]

Genus Species Stratigraphic position Material Notes Images

[19][20][21]

  • Eomiodon serradensis
  • Eomiodon baroni
  • Eomiodon gardeti
  • Eomiodon vulgaris
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, member of inside . The so-called Eomiodon horizon represents the lower Rotzo Formation, composed of organic-rich marlstones with abundant specimens of this genus, typical of stressed environment with low salinity.[19] This genus considered an opportunistic shallow infaunal suspension feeder, and the marker genus for brackish environments.[21]

[19][20][11]

  • Opisoma excavatum
  • Opisoma menchikoffi
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, member of Astartidae inside Carditida. Is considered a genus that evolved from shallow burrowing ancestors, becoming a secondarily semi-infaunal edgewise recliner adapted to photosymbiosis.[11]

[19][20][22]

  • Pseudopachymytilus mirabilis
  • Pseudopachymytilus sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, Incertade sedis inside Pterioida. On the Rotzo formation this byssate bivalves indicate a shallow subtidal or intertidal environment.[22]

[19][20][22][18]

  • Cochlearites loppianus
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimen

A clam, Incertade sedis inside Pterioida. A large bivalve, with a subequivalved shell, up to 60–70 cm high. It is one of the Three main bivalves recovered on the Lithiotis Facies, with its accumulations generally overlying megalodontid coquinas.[20]

[19][20][22][18]

  • Lithioperna scutata
  • Lithioperna sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

A clam, Incertade sedis inside Pterioida. This genus was fund to be a bivalve with a byssate juvenile stage that developed different modes of life on the adulthood depending on the individual density and bottom firmness.[22]

[19][20][22][18]

  • Lithiotis problematica
  • Lithiotis sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

An oyster, member of Malleidae inside Ostreida. It is the major Bivalve identified on the formation, and the genus that gives the name to the Lithiotis fauna.[20] Large, large and aberrant bivalves present on mostly of the Trento Platform.[22] Its accumulation have had different denominations on literature, such as banks, bioherms, biostromes, bivalve reefs or bivalve mounds.[20]

[19][20][22]

  • Gervilleioperna ombonii
  • Gervilleioperna sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A Oyster, member of Malleidae inside Ostreida. On the Rotzo formation this genus become abundant along rootlets, indicative of a very shallow and restricted lagoon or marsh environment.[20]

[19][20][22]

  • Mytiloperna sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A Oyster, member of the family Malleidae inside Ostreida.

Ammonoidea[]

Genus Species Stratigraphic position Material Notes Images

Juraphyllites[23]

Juraphyllites libertus

Contrada Ronchi (Recoaro Terme, Vicenza)

Shells of different sizes.[23]

Type member of the family Juraphyllitidae. It is the most abundant Ammonite found on the Rotzo Formation

Juraphyllites (G)

Fuciniceras[23][24]

  • Fuciniceras suejense
  • Fuciniceras portisi

Shells of different sizes.[23]

An Ammonite of the Family Hildoceratidae

Fuciniceras

[24][25]

  • Protogrammoceras gr. celebratum-italicum
  • Protogrammoceras isseli
  • Protogrammoceras sp.
  • Calcari a Cefalopodi (Induno Olona)
  • Monte Baldo

Shells of different sizes.

An Ammonite of the family Hildoceratidae.

[24][26]

Ugdulenaia cf. ugdulenai

  • Calcari a Cefalopodi (Induno Olona)

Shells of different sizes.

An Ammonite of the family Hildoceratidae.

[24]

Partschiceras anonimum

  • Calcari a Cefalopodi (Induno Olona)

Shells of different sizes.

An Ammonite of the family Phylloceratidae.

Charmasseiceras[23]

Charmasseiceras sp.

Serrada (Folgaria, Trento)

Shells of different sizes.[23]

An Ammonite of the family Schlotheimiidae. A very rare genus on the layers of the formation, being found only a few specimens.

Gasteropoda[]

Genus Species Stratigraphic position Material Notes Images

Neritopsis[27]

Neritopsis fabianii

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail), type genus of the Family Neritopsidae inside Cycloneritimorpha.

[27]

Guidonia pseudorotula

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail) of the Family Trochonematidae inside .

[27]

Pseudorhytidopilus detonii

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Limpet) of the Family Acmaeidae inside Patellogastropoda.

[27]

Proacirsa () crenata

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail) of the Family Gordenellidae inside Allogastropoda.

Discohelix[27]

Discohelix excavata

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail), type genus of the Family Discohelicidae inside Vetigastropoda.

Discohelix tunisiensis apical.jpg

Eucyclidae[27]

Eucyclidae Indeterminate

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail) of the Family Eucyclidae inside Seguenzioidea.

[27]

Eucyclus () kericserensis

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail), type genus of the Family Eucyclidae inside Seguenzioidea.

Eucyclus capitaneus 01.JPG

[27]

Austriacopsis austriaca

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail) of the Family Fissurellidae inside Fissurelloidea.

Emarginula[27]

Emarginula (Emarginula) vadanaei

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail) of the Family Fissurellidae inside Fissurelloidea.

Emarginula crassa (Sowerby).jpg

[27]

Anticonulus acutus

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Top Snail) of the Family Trochidae inside Trochoidea.

[27]

Plectotrochus sp.

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Top Snail) of the Family Trochidae inside Trochoidea.

[27]

  • Ataphrus (Ataphrus) latilabrus
  • Ataphrus (Ataphrus) cordevolensis

Certosa di Vedana

Shells of different sizes.[27]

A Marine Gasteropod (Snail), type genus of the Family Ataphridae inside Trochoidea.

Echinoidea[]

Genus Species Stratigraphic position Material Notes Images

[28]

  • Polydiadema depressum
  • Monte Roite

Two specimens (MCV.20/02 and MCV.20/03)

A Phymosomatoidan. This Echinoids are recovered from a marginal marine layer, with abundant bivalves, gastropods, small corals, often found in concentrations due to tempestites.[28]

Thylacocephala[]

Genus Species Stratigraphic position Material Notes Images

[29]

  • Rugocaris indunensis
  • Calcari a Cefalopodi (Induno Olona)

Medium-sized bivalved carapace

A Concavicaridan Thylacocephalan. This specimen is a rathin rare case where there was the discover of a Thylacocephalan specimen in a rock deposed in a well oxigenated environment, while other finds come mostly from were from anaerobic environments.[29] Rugocaris lived in an epibathyal environment.[29]

Crustacea[]

Genus Species Stratigraphic position Material Notes Images

[14]

Pustulina sp.

Valbona Area

Chelae

An Erymidae Decapodan. There is a frequent presence of Thalassinoides burrows associated with Pustulina body fossils.[14]

Pustulina

[14]

Phlyctisoma sinemuriana

Valbona Area.[14]

Slightly deformed Exuvia

An Erymid Decapodan Crustacean common on In mediterranean rocks. With a rostrum about 1.3 cm long and the cephalic part of carapace about 2.5 cm the specimen probably reached a total length between 9 and 10n cm, being one of the largest specimens belonging to this genus. Frequent association with Thalassinoides burrows. A complete seafloor section was fossilized.[14][13]

[30]

Phraterfabanella tridentinensis

Tonezza del Cimone.[30]

Valves

An Ostracodan of the family Cytherideidae inside . The assemblage is dominated (>95%) by this taxon.[30] It is a rather Medium-sized Ostracodan and markedly sexually dimorphic (males more elongate and more subrectangular versus shorter, more inflated and more subtriangular females).[30] it is likely that the palaeoenvironment was somewhat "stressed" and probably influenced by Salinity, where this genus would adapt better that Other Ostracodans (is related to the modern euryhaline species, torosa).[30]

[30]

Klieana sp.

Tonezza del Cimone.[30]

Valves

An Ostracodan of the family Cytherideidae inside . The earliest record of the genus, the next youngest records of the genus are from Middle Jurassic sequences of France and Great Britain.[30]

Limnocythere[30]

Limnocythere sp.

Tonezza del Cimone.[30]

Valves

An Ostracodan of the family inside . High probability to be a new species of Limnocythere since the authors know of no other with similar posterolateral sulcation.[30]

Vertebrata[]

Chondrichthyes[]

Episodic surficial bioturbation is common on the Rotzo Formation, due to invertebrates or fishes which alter intensely but rapidly the substrate for many cm in depth.[12] It this case the Bioturbation is assigned to mollusc predatory Chondrichthyes, such as Hybodontidae and Heterodontidae.[12] It also resembles present day flat angel sharks or Squatinidae and Guitarfish such as Rhinobatos.[12]

Genus Species Stratigraphic position Material Notes Images

[24][29]

Orthacodus sp

  • Calcari a Cefalopodi (Induno Olona)

Teeth

A Shark, type genus of the family Orthacodontidae inside Synechodontiformes. The teeth recovered resemble Orthacodus longidens, and are related to an epibathyal environment, near to a major carbonate platform shelf.

Hybodus[31][32]

Hybodus sp.

  • Trento
  • Teeth
  • First dorsal fin spine

A Shark, type genus of the family Hybodontidae inside Hybodontiformes. A very prolific genus, found mostly on open marine units.

Chimaeriformes [32]

Chimaeriformes Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Teeth
  • Scales

Uncertain remains

Actinopterygii[]

Unidentified fish scales are known from the formation.[33]

Genus Species Stratigraphic position Material Notes Images

Semionotiformes[33][31][32][34]

Semionotiformes Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

The assigned teeth where found on a layer referred to a Carbonate Platform nearshore section, probably a Lagoonar Environment, where fhis and marine crocodrylomorphs live.

Semionotus.jpg

Lepidotes[32]

Lepidotes sp.

Campiluzzi Tunnel, west of Monte Buso.

  • Teeth

A member of the family Semionotidae inside Neopterygii.

Pycnodontiformes [34][33][31]

Pycnodontiformes indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Teeth
  • Scales

Teleostei Fishes of small size, related to lagoonar environments

[34][33][31]

Pholidophoriformes Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Complete Specimen
  • Referred Fragmentary remains

Teleostei fishes, with genera know to form large Fish schools.

Crocodyliformes[]

Genus Species Location Material Notes Images

Teleosauridae?[34][33]

Teleosauridae? Indeterminate

Monte Pasubio

Teeth.[34][35]

A Thalattosuchian Mesoeucrocodylian. It was cited the presence of fragmentary and poorly preserved remains of “Teleosauridae?”. There are at least two morphotypes, implying two genera or two species. The fossils were found on lagoonal deposits.[33]

Example of Thallatosuchian, Macrospondylus

aff. Eopneumatosuchus[35][34]

aff. Eopneumatosuchus sp.

Monte Pasubio

Partial skull and teeth.[34]

A basal crocodyliform. Was originally thought to be Thalattosuchian remains. Has been compared recently with Eupneumatosuchus, is a member of the genus or a closely related species.

Metasuchia[35][34]

Metasuchia Indeterminate

Monte Pasubio

Upper jaw with rounded teeth.[34]

A basal crocodyliform. It has rouded teeth that suggest a Duriphagous Diet.

Dinosaurs[]

On the Inter-supratidal levels show that on the Rotzo Formation the Tracksites were rarely hit by Storm Waves.[36] Bella Lastra Tracksite recovers this environment, where the shales present (Where Fish & Crocodrylomorph Remains where found) are filled with plant roots, pollen grains, spores, freshwater ostracodes and the bivalve .[36] This was deposited mostly on a Lagoonar environment with abundant shed vegetation.[36] The main local Track record recovers specially Theropoda and Sauropoda, where the Sauropods are the most abundant tracks present (70%), moving the -like Sauropodomorphs of lower levels, with the climate changing from arid to humid.[36] The Coste dell’Anglone ichnosite is considered as derived from semi-arid tidal flat deposits, due to the abundance of Cheirolepidiaceae Pollen.[37] As the Pliensbachian Trento Platform is considered to be formed by a channelized barrier formed by sand, with reiterate tide emersions. The dinosaurs living here probably trampled on the subtidal flats looking for fishes trapped on tidal-derived ponds.[37]

Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Dinosaurs of the Rotzo Formation
Genus Species Location Member Material Notes Images

Moyenisauropus[38][39]

Moyenisauropus sp.

  • Marocche di Dro tracksite

Tovel Member

Footprints

Thyreophoran tracks, type member of the ichnofamily , incertade sedis inside Neornithischia. Is considered by some authors synonymous with the ichnogenus Anomoepus. The tracks adscribed share some morphological affinity with those referred to the Ankylosauridae, such as the ichnogenera and Tetrapodosaurus, and probably belonged to medium-sized Scelidosaurs or other kind of Thyreophorans. Include Specimens of up to 30 cm, suggesting +4 m long scelidosauroids.[38]

Anchisauripus[37][33][39]

  • Anchisauripus sp. A
  • Coste dell'Anglone tracksite

Tovel Member

Footprints

Theropod tracks, type member of the ichnofamily , incertade sedis inside Neotheropoda. Probably related to Coelophysidae, such as Procompsognathus and Panguraptor or Coelophysoidea, such as Lophostropheus. All tracks were probably produced by individuals with the same functional anatomy of the hind foot.[36]

Kayentapus[37][33][39][40]

  • Kayentapus sp. A
  • Kayentapus sp. B
  • Coste dell'Anglone tracksite
  • Bella Lasta tracksite
  • Stol dei Campiluzzi tracksite

Tovel Member

Footprints

Theropod tracks, member of the ichnofamily , incertade sedis inside Neotheropoda. Includes Kayentapus sp. assigned to Sinosaurus-alike Theropods, but on the Rotzo Formation include also Abelisauroid-like tracks, similar to the foot of the genus Velocisaurus.[33] The tracks measure 30 cm long and have a distinctive robust digit III.[36] The Coste dell´Anglone tracksite had a pes with the metatarsal III elongated, as found on Dilophosaurus.[37]

Otozoum?[38][39]

  • Otozoum? sp.
  • Marocche di Dro tracksite

Tovel Member

Footprints

Sauropodomorph tracks, member of the ichnofamily , incertade sedis inside Sauropodomorpha. A single trackway that strongly differs from the others found on the same tracksite. It wears morphological and morphometrical appearance that suggests relationships with a prosauropod trackmaker.[38]

Parabrontopodus[41]

Parabrontopodus sp. A Parabrontopodus sp. B

  • Marocche di Dro tracksite
  • Bella Lasta tracksite

Tovel Member

Footprints

Sauropod tracks, type member of the ichnofamily , incertade sedis inside Sauropodomorpha. Tracks from large basal members of Sauropoda. The larger tracks comprise elliptic pes (L=70 cm; W=50 cm) and subcirluar manus prints (L=33 cm; W=30 cm), what are among the largest known dinosaur tracks of the lower jurassic.[36] While nearly destroyed, the Tracks resemble the foot of the genus Barapasaurus. There is a type B of Parabrontopodus slightly smaller that resemble the genus Vulcanodon.

Flora[]

Rotzo Formation neabry land hosted Bahamian-type biomes, as show by the palynological records

The Rotzo Formation was deposited on a Lagoon on the emerged Trento Platform, leading to a well preserved fossil flora record, collected and studied since the XIX century.[42] The great level of floral fossilization has even allow to discovery fossil amber on the Bellori section. This amber has allow to determine that the environment was a shallow tropical lagoon, only a few metres deep, closed seawards by oolitic shoals and bars.[42] This levels are dominated by a high abundance of sp. (Cheirolepidiaceae), associated with dry and wet climates in coastal areas. The abundance of this group of conifers is also proven by the high presence of cuticles of Pagiophyllum cf. rotzoanum.[43] Beyond this genera, spores are highly diversified, including from Sphenophyta, Selaginellales to Ferns, with abundance (more than 50%) of trilete spores (), what suggest a good freshwater availability corresponding to a wet climate, proven also by the presence of aquatic miospores of algae such as Botryococcus and .[42] The climate was arid on some seasons with monsoon months. The abundance of marine fauna on this sediments, including fragments of corals, bryozoans, bivalves, echinoids, and foraminifera, suggest transport from brackish lagoons and marshes, probably occurred during storm events.[42] Overall data points to a marshy and/or submerged paleoenvironment, comparable to the present-day Taxodium swamp or cypress swamp and a Bahamian-type marine environment in a rather wet monsoonal climate as in the modern southeastern Asia.[42][43]

Amber[]

Type Location Stratigraphic position Material Notes

Amber[44]

Bellori village

Amber Fragments

The Lessini Mountains Amber represents the first report of Jurassic amber from Italy and one of the very few in the world. Due to being composed by drops of less than 1 mm with preserved exceptionally intact morphologies the Bellori amber was probably neither environmentally stressed nor affected by diseases.[44] While no animal remains were found inside the Bellori Amber so far there are various traces of very small (< 1 mm) vegetal fragments, here identified as tissue remains of wood and “mummified wood”.[44] It has also a large amount of Circumpolles (Cheirolepidiaceae), and in some fragments there are traces of the freshwater algae .[44] Although several cuticles found in Bellori could be attributed to Pagiophyllum (Araucariaceae).[44] Those lived on a coastal and wet palaeoenvironment similar to the present-day Taxodium swamps with monsoonal seasons as in the modern southern Asia.[44]

Palynology[]

Genus Species Location Stratigraphic position Material Notes

[45][46]

Accincitisporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Unknown affinities

[45]

Alisporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with (), Corystospermales, Ginkgoopsida (Pelataspermales), Coniferopsida (Podocarpaceae, Ulmanniaceae, Voltziales).[44]

[45]

Aratrisporites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycophytes, in situ in , and zeiller.[44]

[45]

Auritulinasporites scanicus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Pteridophyta.[44]

[45]

Baculatisporites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Pteridopsida.[44]

[45]

Calamospora sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Sphenopsida.[44]

[45]

Calamospora sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycopsida.[44]

[45]

cf. Cabochonicus carbunculus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[46]

Affinities with Selaginellaceae

[45]

Chasmatosporites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycopsida.[44]

[45]

  • Classopollis sp
  • Classopollis classoides
  • Classopollis meyeriana
  • Classopollis torosus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[44]

Affinities with Cheirolepidiaceae.[44]

[45]

  • Concavisporites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Pteridophyta.[44]

[45]

  • Cycadopites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Cycadophyta.[44]

[45]

  • Deltoidospora minor
  • Deltoidospora sp.
  • Deltoidospora toralis

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycophyta.[44]

[45]

  • Densosporites sp.
  • Densosporites fissus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycophyta.[44]

[45]

  • Eucommidites troedssoni

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Cycadales.[44]

[45]

  • Foveosporites sp.
  • Foveosporites visscheri

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Selaginellaceae.[44]

[45]

  • Granuloperculatipollis sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[44]

Affinities with Selaginellaceae.[44]

[45]

Horstisporites harrisii

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[46]

Affinities with Selaginella-like

[45]

cf. Hughesisporites orlowskae

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[46]

Affinities with Lycophyta

[45]

  • Ischyosporites sp.
  • Ischyosporites variegatus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Pteridopsida.[44]

[45]

  • Leptolepidites sp.
  • Leptolepidites cf. major

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycopsida.[44]

[45]

  • Limbosporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycopsida.[44]

[45]

  • Lycopodiacidites sp.
  • Lycopodiacidites regulatus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycopsida.[44]

[45]

  • Lycopodiumsporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycopsida.[44]

[45]

  • Monosulcites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Pteridopsida.[44]

[45]

  • Perinopollenites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[44]

Affinities with Gymnospermophyta.[44]

[45]

  • Pinuspollenites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[44]

Affinities with Pinales.[44]

[45]

  • Retitriletes semimuris

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycopodiaceae.[44]

[45]

  • Retusotriletes sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Lycopodiaceae.[44]

[45]

  • Skarbysporites puntii
  • Skarbysporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with freshwater green algae.[44]

[45]

  • Schizosporis cf. reticulates
  • Schizosporis sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Chlorophyta.[44]

[45]

  • Spheripollenites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[44]

Affinities with Chlorophyta.[44]

[45]

  • Tigrisporites sp.
  • Tigrisporites jonkeri

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Filicales.[44]

[45]

  • Todisporites sp.
  • Todisporites minor

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Pteridopsida.[44]

[45]

  • Trachysporites fuscus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Pteridopsida.[44]

[45]

cf. Trileites murrayi

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[46]

Affinities with Selaginellaceae

[45]

cf. Verrutriletes compostipunctatus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[46]

Affinities with Selaginellaceae

[45]

  • Vitreisporites pallidus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[44]

Affinities with Gymnospermophyta.[44]

Plant remains[]

Genus Species Location Stratigraphic position Material Notes Images

Equisetites[47][48][49][50]

  • Equisetites bunburyanus
  • Equisetites veronensis
  • Grey limestones of Veneto

Stems

Affinities with Equisetaceae inside Polypodiopsida. Related to humid environments, the stems of local Equisetopsids show a rather large grown cycle, like the Bamboo on the modern Southern Asia, implicating tall Plants influenced by a Tropical Climate.

Phyllotheca[47][48][49][50]

  • Phyllotheca brongniartiana
  • Grey limestones of Veneto

Leaf Whorl

Affinities with Phyllothecaceae inside Equisetales

Phyllotheca brongniartiana from the Rotzo Formation

[47][48][49][50]

  • Protorhipis asarifolia
  • Grey limestones of Veneto

Fronds

Affinities with Dipteridaceae inside Gleicheniales. A rather lower Fern, with great resemblance with the modern genus Dipteris

[47][48][49][50]

  • Matonidium rotzoana
  • Grey limestones of Veneto

Fronds

Affinities with Matoniaceae inside Gleicheniales.

[47][48][49][50]

  • Marzaria paroliniana
  • Grey limestones of Veneto

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Marzaria paroliniana from the Rotzo Formation

Phlebopteris[47][48][49][50]

  • Phlebopteris polypodioides
  • Grey limestones of Veneto

Fronds

Affinities with Matoniaceae inside Gleicheniales.

[47][48][49][50]

  • Dictyophyllum sp.
  • Grey limestones of Veneto

Fronds

Affinities with Dipteridaceae inside Gleicheniales.

[47][48][49][50]

  • Gleichenites elegans
  • Grey limestones of Veneto

Fronds

Affinities with Polypodiales inside Polypodiopsida

Sphenopteris[47][48][49][50]

  • Sphenopteris leckenbyi
  • Grey limestones of Veneto

Fronds

Affinities with Lyginopteridopsida inside Lyginopteridales

[47][48]

  • Lomatopteris jurensis
  • Grey limestones of Veneto

Fronds

Affinities with Cyclopteridaceae inside Pteridospermatophyta.

Lomatopteris jurensis from the Rotzo Formation

Cyclopteris[47][48][49][50]

  • Cyclopteris minor
  • Grey limestones of Veneto

Fronds

Affinities with Cyclopteridaceae inside Pteridospermatophyta.

[47][48][51]

  • Cycadopteris brauniana
  • Cycadopteris heerii
  • Grey limestones of Veneto
  • Roverè di Velo
  • Albaredo

Fronds

Affinities with inside . On the Roverè di Velo collection, C. brauniana is the most common Frond found. The Fronds belong to medium to large Arboreal Ferns.

Cycadopteris brauniana and Cycadopteris sp., both recovered from different locations of the Rotzo Formation

[47][48][49][50][51]

  • Dichopteris cf. rhomboidalis
  • Dichopteris visianica
  • Roverè di Velo
  • Grey limestones of Veneto

Fronds

Affinities with inside . This frons genus has been Synonymized with Pachypteris , but it clearli differs due to the presence of odontopteridian pinnules, while Pachypteris has pinnules of the sphenopteridian type. Related to Arboreal Ferns.

Dichopteris visianica from the Rotzo Formation

[47][48][49][50]

  • Pseudosagenopteris angustifolia
  • Grey limestones of Veneto

Leaflets

Affinities with Caytoniales inside .

Sagenopteris[47][48][51]

  • Sagenopteris goeppertiana
  • Sagenopteris nilssoniana
  • Roverè di Velo
  • Grey limestones of Veneto

Leaflets

Affinities with Caytoniaceae inside Caytoniales. There is a superficial doubt with the assigantion to S. goeppertiana, and du to that Roverè di Velo specimen may be confirmed by comparing them with original Zigno's Material.

Sagenopteris nilssoniana from the Rotzo Formation

[47][48][49][50]

  • Sphenozamites rossii
  • Sphenozamites sp.

Grey limestones of Veneto

Leaflets

Affinities with Bennettitales inside . Related with Cycad-like trees.

[47][48][49][50]

  • Weltrichia sp.

Grey limestones of Veneto.

Reproductive structure

Affinities with Bennettitales inside . Weltrichia is considered by some authors some kind of Bennetitalean Flower, putting that group on relationships with the Angiosperms.

?Pterophyllum[47][48][49][50]

  • Pterophyllum sp.
  • cf. Pterophyllum platyrachis

Grey limestones of Veneto.

Leaflets

Affinities with Bennettitales inside . This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.

Otozamites[47][48][49][50][51]

  • Otozamites bunburyanus
  • Otozamites cf. bunburyanus ?
  • Otozamites feistmantelii
  • Otozamites molinianus
  • Otozamites massalongianus
  • Otozamites sp.
  • Roverè di Velo
  • Grey limestones of Veneto.

Pinnate leaf fragments

Affinities with Bennettitales inside . Overall, the genus Otozamites is among the most abundant flora genus recovered on some of the levels of the Rotzo Formation, and also one of the most diversified. It belongs to arbustive Bennetites.

Otozamites bunburyanus from the Rotzo Formation

Ptilophyllum[47][48][49][50][51]

  • Ptilophyllum grandifolium
  • Ptilophyllum triangulare
  • Ptilophyllum sp
  • Roverè di Velo
  • Grey limestones of Veneto.

Leaves

Affinities with Bennettitales. Was previously ascribed by Guiscardi (Director of the Geology Department of the Napoles University between 1861 al 1885) to Pachypteris visianica and Cycadopteris brauniana.

Ptilophyllum grandifolium from the Rotzo Formation

Williamsonia[47][48]

  • Williamsonia italica
  • Monte raut
  • Roverè di Velo
  • Grey limestones of Veneto.

Leaves

Affinities with Williamsoniaceae.

Williamsonia italica from the Rotzo Formation

[47][48][49][50]

  • Trevisania furcellata
  • Grey limestones of Veneto

Leaves

Affinities with the genus , as probably a member of Ginkgoales inside Ginkgoopsida.

[47][48][51]

  • Desmiophyllum zeillerianum
  • Desmiophyllum rigidum

Roverè di Velo

Incomplete leaves

Affinities with Ginkgoaceae inside Ginkgoales. Was assigned the Podozamites genus and named them Podozamites zeillerianus.

[47][48]

  • Yuccites schimperianus

Grey limestones of Veneto.

Pollen Organ

Incertade sedis inside Coniferales. Some Specimens are difficult to identify.

[47][48]

  • Taxites vicentina

Grey limestones of Veneto.

Branched shoots

Affinities with Cupressaceae inside Coniferales. Some Specimens are difficult to identify and where mistaken as Bennetite Fronds.

Taxites vicetina from the Rotzo Formation

[47][48][49][50]

  • Stachyotaxus sp.

Grey limestones of Veneto.

Branched shoots

Affinities with inside Coniferales, a genus that has been related to the fossil wood , being probably Fronds of the Podocarpaceae family.

Elatocladus[47][48][49][50]

  • Elatocladus zignoi
  • cf. Elatocladus sp.

Grey limestones of Veneto.

Branched shoots

Affinities with Podocarpaceae inside Coniferales.

Elatocladus zignoi from the Rotzo Formation

[47][48][49][50][51]

  • Dactylethrophyllum peristictum
  • Roverè di Velo
  • Grey limestones of Veneto.

Branched shoots

Affinities with Cheirolepidiaceae inside Coniferales.

Brachyphyllum[47][48][49][50][51]

  • Brachyphyllum kendalianum
  • Brachyphyllum tropidimorphyrn
  • Roverè di Velo
  • Grey limestones of Veneto.

Branched shoots

Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. Brachyphyllum tropidimorphyrn shows close resemblance between African and Venetian conifers and its distribution suggests a lowland araucarian forest.[52]

Brachyphyllum kendalianum from the Rotzo Formation

Pagiophyllum[43][47][48][51]

  • Pagiophyllum rotzoanum
  • Pagiophyllum cf.rotzoanum
  • Pagiophyllum veronense
  • Pagiophyllum cf. veronense
  • Pagiophyllum valdassense

Roverè di Velo

  • Leaves
  • Cuticles

Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. One of the specimens was assigned to Otozamites massalongianus, due to confusing the overlapping appearance and the Otozamites-like shape of the leaves of the apical portion of the main shoot.

Pagiophyllum rotzoanum from the Rotzo Formation

Indeterminate Specimen[47][48][51]

  • Indeterminate

Roverè di Velo

Nearly complete pinna

Due to the bad preservation of specimen no systematic attribution is possible.

See also[]

Bibliography[]

  1. ^ Castellarin, A.; Picotti, V.; Cantelli, L.; Claps, M.; Trombetta, L.; Selli, L.; Carton, A.; Borsato, A.; Daminato, F.; Nardin, M.; Santuliana, E.; Veronese, L.; Bollettinari, G. (2005). "Note Illustrative della Carta Geologica d'Italia alla scala 1:50.000, Foglio 080 Riva del Garda". Dipartimento Difesa del Suolo, Servizio Geologico d'Italia. 56 (2): 145. Retrieved 24 January 2022.
  2. ^ "PBDB".
  3. ^ Broglio Loriga, C.; Neri, C. (1976). "Aspetti paleobiologici e paleogeografici delle facies "Lithiotis" (Giurese inf.)". Rivista Italiana di Paleontologia e Stratigrafia. 82 (1): 651–151.
  4. ^ Franceschi, M.; Dal Corso, J.; Posenato, R.; Roghi, G.; Masetti, D.; Jenkyns, H. C. (2014). "Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 410 (1): 255–263. Bibcode:2014PPP...410..255F. doi:10.1016/j.palaeo.2014.05.025. Retrieved 12 November 2021.
  5. ^ Masetti, D.; Fantoni, R.; Romano, R.; Sartorio, D.; Trevisani, E. (2012). "Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data". AAPG Bulletin. 96 (11): 2065–2089. doi:10.1306/03091211087. Retrieved 12 November 2021.
  6. ^ Mietto, P.; Roghi, G.; Zorzin, R. (2000). "Le impronte di dinosauri liassici dei Monti Lessini Veronesi [The Liassic dinosaur tracks from the Veronese Monti Lessini]". Bollettino del Museo Civico di Storia Naturale di Verona. Geologia Paleontologia Preistoria. 24 (2): 55–72.
  7. ^ Masseti, D.; Posenato, R.; Bassi, D.; Fungagnoli, A. (2005). "The Rotzo Formation (Lower Jurassic) at the Valbona Pass (Vicenza Province)". IRIS Università degli Studi di Ferrara. 31 (5): 35–56. Retrieved 3 January 2022.
  8. ^ Neri, Mirco; Papazzoni, Cesare Andrea; Vescogni, Alessandro; Roghi, Guido (2015). "Cyclical variation in paleoenvironments of the Rotzo formation (Lower Jurassic, Lessini Mts., N Italy)". STAMPA. 33 (1): 74–75.
  9. ^ Urban, I. (2017). "Petrografia e geochimica delle ooliti del Giurassico inferiore della Piattaforma di Trento". Area 04 - Scienze della Terra > GEO/02 Geologia Stratigrafica e Sedimentologica. 1 (1): 1–203. Retrieved 3 January 2022.
  10. ^ Monaco, P.; Giannetti, A. (2001). "Stratigrafia tafonomica nel Giurassico inferiore dei Calcari Grigi della Piattaforma di Trento". Atti Ticinensi di Scienze della Terra. 42 (1): 175–209. Retrieved 3 January 2022.
  11. ^ a b c Posenato, R. (2013). "Opisoma excavatum Boehm, a Lower Jurassic photosymbiotic alatoform-chambered bivalve". Lethaia. 46 (2): 424–437. doi:10.1111/let.12020. Retrieved 3 January 2022.
  12. ^ a b c d e f g h i j k l m n o p Monaco, P.; Giannetti, A. (2002). "Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy)". Facies. 47 (1): 57–82. doi:10.1007/BF02667706. S2CID 129735856. Retrieved 3 January 2022.
  13. ^ a b c d e f Monaco, P. (2000). "Decapod burrows (Thalassinoides, Ophiomorpha) and crustacean remains in the Calcari Grigi, lower Jurassic, Trento platform (Italy)". 1st Workshop on Mesozoic and Tertiary decapod crustaceans, Studi e Ricerche, Associazione Amici del Museo Civico "G.Zannato" Montecchio Maggiore (Vicenza), October 6–8, 2000. 1 (1): 55–57. Retrieved 3 January 2022.
  14. ^ a b c d e f g h i j Garassino, A.; Monaco, M. (2000). "Burrows and body fossil of decapod custaceans i the Calcari Grigi, Lower Jurassic, Treno Platform (Italy)". Geobios. 34 (3): 291–301.
  15. ^ a b c d e f Monaco, P.; Garassino, A. (2001). "Burrowing and carapace remains of crustacean decapods in the Calcari Grigi, Early Jurassic, Trento platform". Geobios. 34 (3): 291–301. doi:10.1016/S0016-6995(01)80077-2. Retrieved 3 January 2022.
  16. ^ a b c Bernardi, M.; Ferreti, P.; Petti, F.M.; Avanzini, M. (2009). "Asteriacites isp. from the Coste dell'Anglone dinosaur ichnosite (Valle del Sarca, Trentino, NW Italy)". Giornate di Paleontologia. 43 (1): 28–31.
  17. ^ a b Franceschi, M.; Dal Corso, J.; Posenato, R.; Roghi, G.; Masetti, D.; Jenkyns, H.C. (2014). "Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 410 (4): 255–263. Bibcode:2014PPP...410..255F. doi:10.1016/j.palaeo.2014.05.025. Retrieved 3 January 2022.
  18. ^ a b c d e f Fraser, N.M.; Bottjer, D.J.; Fischer, A.G. (2004). "Dissecting "Lithiotis" Bivalves: Implications for the Early Jurassic Reef Eclipse". PALAIOS. 19 (1): 51–67. Bibcode:2004Palai..19...51F. doi:10.1669/0883-1351(2004)019<0051:DLBIFT>2.0.CO;2. Retrieved 3 January 2022.
  19. ^ a b c d e f g h i Bassi, D.; Boomer, I.; Fugagnoli, A.; Loriga, C.; Posenato, R.; Whatley, R.C. (1999). "Faunal assemblages and palaeoenvironment of shallow water black shales in the Tonezza area (Calcari Grigi, Early Jurassic, Southern Alps)" (PDF). Annali dell'Università di Ferrara, Sezione di Scienze della Terra. 8 (3): 1–16. Retrieved 3 January 2022.
  20. ^ a b c d e f g h i j k l Posenato, R.; Masetti, D. (2012). "Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (Southern Alps, Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 361 (2): 1–13. Bibcode:2012PPP...361....1P. doi:10.1016/j.palaeo.2012.07.001. Retrieved 3 January 2022.
  21. ^ a b Posenato, R.; Bassi, D.; Avanzini, M. (2013). "Bivalve pavements from shallow-water black-shales in the Early Jurassic of northern Italy: A record of salinity-and oxygen-depleted environmental dynamics". Palaeogeography, Palaeoclimatology, Palaeoecology. 369 (2): 262–271. Bibcode:2013PPP...369..262P. doi:10.1016/j.palaeo.2012.10.032. Retrieved 3 January 2022.
  22. ^ a b c d e f g h i Posenato, R.; Avanzini, M. (2004). "Short note–Nota breve "Lithiotis" beds of the Rotzo Formation (Calcari Grigi Group, Lower Jurassic) from Albaredo (Rovereto, Trento)" (PDF). Acta Geol. 81 (6): 23–28. Retrieved 3 January 2022.
  23. ^ a b c d e f Mietto, P. (1985). "Ammoniti nella Piattaforma liassica Veneta". Rivista Italiana di Paleontologia e Stratigrafia. 91 (1): 3–14. Retrieved 3 January 2022.
  24. ^ a b c d e Haas, O. (1913). "Die Fauna des mittleren Lias von Ballino im Sudtirol". Beitr. Paldont. Geol. Osterr. 26 (1): 1–161. Retrieved 3 January 2022.
  25. ^ Sarti, C.; Ferrari, G. (1999). "The first record of an in situ ammonite from the upper part of the Calcari Grigi di Noriglio Formation of the Monte Baldo (Trentino, Northern Italy)". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 213 (3): 313–334. doi:10.1127/njgpa/213/1999/313. Retrieved 3 January 2022.
  26. ^ Castelli, M. (1980). "Ammoniti del Pliensbachiano della collezione paleontologica del Museo civico di storia naturale di Brescia" (PDF). Natura Bresciana. 17 (2): 34–76. Retrieved 3 January 2022.
  27. ^ a b c d e f g h i j k l m n o p q r s t u v w x Gatto, R.; Monari, S. (2010). "Pliensbachian gastropods from Venetian Southern Alps (Italy) and their palaeobiogeographical significance". Palaeontology. 53 (4): 771–802. doi:10.1111/j.1475-4983.2010.00961.x. Retrieved 3 January 2022.
  28. ^ a b Borghi, E.; Bottazzi, A. (2020). "First record of the genus Polydiadema Lambert, 1888 (Echinoidea) in the Jurassic of Italy" (PDF). Studi Trentini di Scienze Naturali. 99 (4): 15–19. Retrieved 3 January 2022.
  29. ^ a b c d Tintori, A.; Bigi, E.; Crugnola, G.; Danini, G. (1986). "A new Jurassic Thylacocephala Rugocaris indunensis gen. n. sp. n. and its paleoecological significance". Rivista Italiana di Paleontologia e Stratigrafia. 92 (2): 239–250. Retrieved 3 January 2022.
  30. ^ a b c d e f g h i j k Boomer, I.; Whatley, R.; Bassi, D.; Fugagnoli, A.; Loriga, C. (2001). "An Early Jurassic oligohaline ostracod assemblage within the marine carbonate platform sequence of the Venetian Prealps, NE Italy". Palaeogeography, Palaeoclimatology, Palaeoecology. 166 (3–4): 331–344. Bibcode:2001PPP...166..331B. doi:10.1016/S0031-0182(00)00216-9. Retrieved 3 January 2022.
  31. ^ a b c d Franceschi, Fabio; Bernardi, Massimo (2020). "Vertebrate remains from the Rotzo Formation (Lower Jurassic, Trento Platform, Italy): preliminary note" (PDF). Fossilia - Reports in Palaeontology. 78 (6): 25–27. Retrieved 3 January 2022.
  32. ^ a b c d Franceschi, F.; Bernardi, M. (2021). "The higher ecological tiers of the Rotzo Formation: first clues on a forgotten vertebrate fauna". _PaleoDays 2021 - XXI Convegno della Società Paleontologica Italiana. 2 (1): 6–7. Retrieved 3 January 2022.
  33. ^ a b c d e f g h i j Petti, F. M.; Bernardi, M.; Todesco, R.; Avanzini, M. (2011). "Dinosaur footprints as ultimate evidence for a terrestrial environment in the late Sinemurian trento carbonate platform". PALAIOS. 26 (10): 601–606. Bibcode:2011Palai..26..601P. doi:10.2110/palo.2011.p11-003r. S2CID 128845481. Retrieved 3 January 2022.
  34. ^ a b c d e f g h i j Avanzini, M. (1998). "Resti di vertebrati dal Giurassico inferiore della piattafor-ma di Trento (Italia settentrionale) Nota prelimiare". Studi Trentini diScienze Naturali. Acta Geologica. 73 (7): 75–80.
  35. ^ a b c Avanzini, M. (1998). "Resti di rettili continentali dal Giurassico inferiore della piattaforma di Trento (Italia settentrionale)". Studi Trentini di Scienze Naturali - Acta Geologica. 73 (4): 75–80.
  36. ^ a b c d e f g Guidorroghi, R. (2006). "Lower Jurassic (Hettangian-Sinemurian) dinosaur track megasites, southern Alps, Northern Italy". The Triassic-Jurassic Terrestrial Transition. 37 (8): 207.
  37. ^ a b c d e Petti, F. M.; Bernardi, M.; Ferretti, P.; Tomasoni, R.; Avanzini, M. (2011). "Dinosaur tracks in a marginal marine environment: the Coste dell'Anglone ichnosite (Early Jurassic, Trento Platform, NE Italy)". Italian Journal of Geosciences. 130 (1): 27–41. Retrieved 3 January 2022.
  38. ^ a b c d Avanzini, M.; Leonardi, G.; Tomasoni, R.; Campolongo, M. (2001). "Enigmatic dinosaur trackways from the Lower Jurassic (Pliensbachian) of the Sarca Valley, northeast Italy". Ichnos. 8 (3–4): 235–242. doi:10.1080/10420940109380190. S2CID 128584482. Retrieved 3 January 2022.
  39. ^ a b c d Petti, F.M.; Avanzini, M.; Antonelli, M; Bernardi, M.; Leonardi, G.; Manni, R.; Mietto, P.; Pignatti, J.; Piubelli, D.; Sacco, E.; Wagensommer, A. (2020). "Jurassic tetrapod tracks from Italy: a training ground for generations of researchers". Tetrapod Ichnology in Italy: The State of the Art. Journal of Mediterranean Earth Sciences. 12 (3): 137–165. Retrieved 3 January 2022.
  40. ^ Avanzini, M.; Petti, F. M. (2008). "Updating the dinosaur tracksites from the Lower Jurassic Calcari Grigi Group (Southern Alps, northern Italy)". Studi Trentini di Scienze Naturali, Acta Geologica. 83 (8): 289–301. Retrieved 3 January 2022.
  41. ^ Franceschi, M.; Martinelli, M.; Gislimberti, L.; Rizzi, A.; Massironi, M. (2015). "Integration of 3D modeling, aerial LiDAR and photogrammetry to study a synsedimentary structure in the Early Jurassic Calcari Grigi (Southern Alps, Italy)". European Journal of Remote Sensing. 48 (1): 527–539. doi:10.5721/EuJRS20154830. S2CID 134429593. Retrieved 3 January 2022.
  42. ^ a b c d e Neri, M.; Papazzoni, C.A.; Kustatscher, E.; Roghi, G. (2015). "Paleoenvironmental data from the amber-bearing levels of the Rotzo formation (Pliensbachian, Lower Jurassic), Monti Lessini (Verona, Italy)". In XV Edizione delle "Giornate di Paleontologia", PaleoDays. 15 (2): 78–79. Retrieved 3 January 2022.
  43. ^ a b c Neri, M.; Kustatscher, E.; Roghi, G.; Papazzoni, C.A. (2016). "Paleobotanical assemblage from the Lower Jurassic amber bearing levels from the Rotzo Formation, Monti Lessini (Venetian Prealps, Northern Italy)". In the Micropaleontological Society, 5th Silicofossil and Palynology Joint Meeting. 16 (2): 33.
  44. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs Neri, M.; Roghi, G.; Ragazzi, E.; Papazzoni, C. A. (2017). "First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy)". Geobios. 50 (1): 49–63. doi:10.1016/j.geobios.2016.10.001. Retrieved 3 January 2022.
  45. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al Van Erve, A.W. (1977). "Palynological investigation in the Lower Jurassic of the Vicentinian Alps (Northeastern Italy)". Review of Palaeobotany and Palynology. 23 (6): 1–117. doi:10.1016/0034-6667(77)90004-5. Retrieved 3 January 2022.
  46. ^ a b c d e f Neri, M.; Kustatscher, E.; Roghi, G. (2018). "Megaspores from the Lower Jurassic (Pliensbachian) Rotzo Formation (Monti Lessini, northern Italy) and their paleoenvironmental implications". Palaeobiodiversity and Palaeoenvironments. 98 (1): 102–118. doi:10.1007/s12549-017-0314-z. S2CID 133666705. Retrieved 3 January 2022.
  47. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae De Zigno, A. (1856–1868). "Flora fossilis formationis Oolithicae". Tipografia del Seminario di Padova. 1 (1): 1–426. Retrieved 3 January 2022.
  48. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae De Zigno, A. (1885). "Flora fossilis formationis oolithicae Volume 2". Padova, Tip. Del Seminario. 3 (2): 1–356. Retrieved 3 January 2022.
  49. ^ a b c d e f g h i j k l m n o p q r s t u v Wesley, A. (1956). "Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 1". Mem. Ist. Geol. Min. Univ. Padova. 19 (3): 1–69.
  50. ^ a b c d e f g h i j k l m n o p q r s t u v Wesley, A. (1958). "Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 2". Mem. Ist. Geol. Min. Univ. Padova. 21 (1): 1–57.
  51. ^ a b c d e f g h i j Bartiromo, A.; Barone Lumaga, M.R. (2009). "Taxonomical revision of the Collection of Jurassic plants from Roverè di Velo (Veneto, northern Italy) stored in the Palaeontological Museum of the University of Naples "Federico II"". Bollettino della Società Paleontologica Italiana. 48 (3): 1–13. Retrieved 3 January 2022.
  52. ^ Krassilov, V. A. (1978). "Araucariaceae as indicators of climate and paleolatitudes". Review of Palaeobotany and Palynology. 26 (1–4): 113–124. doi:10.1016/0034-6667(78)90008-8.
Retrieved from ""