Solar eclipse of August 1, 2008

From Wikipedia, the free encyclopedia
Solar eclipse of August 1, 2008
Corona.jpg
Totality showing corona from Kumul, Xinjiang
SE2008Aug01T.png
Map
Type of eclipse
NatureTotal
Gamma0.8307
Magnitude1.0394
Maximum eclipse
Duration147 sec (2 m 27 s)
Coordinates65°42′N 72°18′E / 65.7°N 72.3°E / 65.7; 72.3
Max. width of band237 km (147 mi)
Times (UTC)
(P1) Partial begin04:06.8
(U1) Total begin21:07.3
Greatest eclipse10:22:12
(U4) Total end21:28.3
(P4) Partial end38:27.7
References
Saros126 (47 of 72)
Catalog # (SE5000)9526

A total solar eclipse occurred at the Moon's descending node of the orbit on August 1, 2008. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It had a magnitude of 1.0394[1] that was visible from a narrow corridor through northern Canada (Nunavut), Greenland, central Russia, eastern Kazakhstan, western Mongolia and China.[2] Occurring north of the arctic circle, it belonged to the so-called midnight sun eclipses. The largest city in the path of the eclipse was Novosibirsk in Russia.[3]

The moon's apparent diameter was 1 arcminute, 17.8 arcseconds (77.8 arcseconds) larger than the February 7, 2008 annular solar eclipse.

This was the first eclipse this season, with the second being the 16 August 2008 partial lunar eclipse.

The total eclipse lasted for 2 minutes, and covered 0.4% of the Earth's surface in a 10,200 km long path. It was the 47th eclipse of the 126th Saros cycle, which began with a partial eclipse on March 10, 1179 and will conclude with a partial eclipse on May 3, 2459.[4]

A partial eclipse could be seen from the much broader path of the Moon's penumbra, including northeastern North America and most of Europe and Asia.[2]

It was described by observers as "special for its colours around the horizon. There were wonderful oranges and reds all around, the clouds lit up, some dark in silhouette, some golden, glowing yellowy-orange in the distance. You could see the shadow approaching against the clouds and then rushing away as it left."[5][citation needed]

The moon's apparent diameter was larger because the eclipse was occurring only 58 hours, 56 minutes after perigee.[citation needed]

Start of eclipse: Canada and Greenland[]

SE2008Aug01T.gif
Animated path

The eclipse began in the far north of Canada in Nunavut at 09:21 UT, the zone of totality being 206 km wide, and lasting for 1 minute 30 seconds. The path of the eclipse then headed north-east, crossing over northern Greenland and reaching the northernmost latitude of 83° 47′ at 09:38 UT before dipping down into Russia.[4]

The path of totality touched the northeast corner of Kvitøya, an uninhabited Norwegian island in the Svalbard archipelago, at 09:47 UT.[citation needed]

Greatest eclipse: Russia[]

The eclipse reached the Russian mainland at 10:10 UT,[4] with a path 232 km wide and a duration of 2 minutes 26 seconds.[citation needed] The greatest eclipse occurred shortly after, at 10:21:07 UT at coordinates

 WikiMiniAtlas
65°39′N 72°18′E / 65.650°N 72.300°E / 65.650; 72.300 (close to Nadym), when the path was 237 km wide, and the duration was 2 minutes 27 seconds. Cities in the path of the total eclipse included Megion, Nizhnevartovsk, Strezhevoy, Novosibirsk and Barnaul.[4] Around 10,000 tourists were present in Novosibirsk, the largest city to experience the eclipse.[3] For Gorno-Altaysk the eclipse was the second consecutive total solar eclipse after the March 2006 eclipse.[6]

Conclusion: Mongolia and China[]

The path of the eclipse then moved south-east, crossing into Mongolia and just clipping Kazakhstan at around 10:58 UT. The path here was 252 km wide, but the duration was decreased to 2 minutes 10 seconds. The path then ran down the China-Mongolia border, ending in China at 11:18 UT, with an eclipse lasting 1 minute 27 seconds at sunset.[citation needed] The total eclipse finished at 11:21 UT. The total eclipse passed over Altay City, Hami and Jiuquan.[4] Around 10,000 people were gathered to watch the eclipse in Hami.[3]

Partial eclipse[]

A partial eclipse was seen from the much broader path of the Moon's penumbra, including the north east coast of North America and most of Europe and Asia.[2] In London, England, the partial eclipse began at 09:33 BST, with a maximum eclipse of 12% at 10:18 BST, before concluding at 11:05 BST. At Edinburgh the partial eclipse was 23.5% of the sun, whilst it was 36% in Lerwick in the Shetland Isles.[7]

LTU 1111[]

German charter airline LTU, now trading as Air Berlin, operated a special flight from Düsseldorf to the North Pole to observe the eclipse. Flight number LT 1111 spent over 11 hours in the air, returning to base at 6pm after flying a planeload of eclipse chasers, scientists, journalists and TV crews to watch the celestial event. The route also included a low-level sightseeing tour of Svalbard before the eclipse and the magnetic pole afterwards.

More details about the Total Solar Eclipse of 1 August 2008.[]

Eclipse Magnitude: 1.03942

Eclipse Obscuration: 1.08040

Gamma: 0.83070

Greatest Eclipse: 2008 August 01 at 10:22:12.3 TD (10:21:06.7 UTC)

Sun right ascension: 8.8

Sun declination: 17.9

Sun diameter (arcseconds): 1891.0

Moon right ascension: 8.82

Moon declination: 18.6

Moon diameter (arcseconds): 1948.2

Delta T: 1 minute, 5.7 seconds

Saros series: 126th (47 of 72)

Related eclipses[]

Eclipses of 2008[]

Tzolkinex[]

Half-Saros[]

Tritos[]

Solar Saros 126[]

Inex[]

  • Preceded: Solar eclipse of August 22, 1979
  • Followed: Solar eclipse of July 13, 2037

Solar eclipses 2008–2011[]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[8]

Solar eclipse series sets from 2008–2011
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121
Solar eclipse 2008Feb07-New Zealand-partial-Greg Hewgill.jpg
Partial from Christchurch, NZ
2008 February 07
SE2008Feb07A.png
Annular
-0.9570 126
NovosibirskTotalEclipsePhoto-cropped.jpg
Novosibirsk, Russia
2008 August 01
SE2008Aug01T.png
Total
0.8307
131
Solar Eclipse from Riversdale South Africa by Wim Filmalter (3238794030) (cropped).jpg
Partial from Riversdal
2009 January 26
SE2009Jan26A.png
Annular
-0.2819 136
Solar eclipse 22 July 2009 taken by Lutfar Rahman Nirjhar from Bangladesh.jpg
Kurigram, Bangladesh
2009 July 22
SE2009Jul22T.png
Total
0.0698
141
(closeup) Solar annular eclipse of January 15, 2010 in Bangui, Central African Republic.JPG
Bangui, Central African Republic
2010 January 15
SE2010Jan15A.png
Annular
0.4002 146
Eclipse 2010 Hao 1.JPG
Hao, French Polynesia
2010 July 11
SE2010Jul11T.png
Total
-0.6787
151
Solar eclipse Vienna 2011-1-4 a.jpg
Partial from Vienna, Austria
2011 January 04
SE2011Jan04P.png
Partial (north)
1.0626 156 2011 July 01
SE2011Jul01P.png
Partial (south)
-1.4917
Partial solar eclipses on June 1, 2011, and November 25, 2011, occur on the next lunar year eclipse set.

Saros 126[]

It is a part of Saros cycle 126, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on March 10, 1179. It contains annular eclipses from June 4, 1323 through April 4, 1810, hybrid eclipses from April 14, 1828 through May 6, 1864 and total eclipses from May 17, 1882 through August 23, 2044. The series ends at member 72 as a partial eclipse on May 3, 2459. The longest duration of central eclipse (annular or total) was 6 minutes, 30 seconds of annularity on June 26, 1359. The longest duration of totality was 2 minutes, 36 seconds on July 10, 1972. All eclipses in this series occurs at the Moon’s descending node.

Series members 42–52 occur between 1901 and 2100
42 43 44
SE1918Jun08T.png
June 8, 1918
SE1936Jun19T.png
June 19, 1936
SE1954Jun30T.png
June 30, 1954
45 46 47
SE1972Jul10T.png
July 10, 1972
SE1990Jul22T.png
July 22, 1990
SE2008Aug01T.png
August 1, 2008
48 49 50
SE2026Aug12T.png
August 12, 2026
SE2044Aug23T.png
August 23, 2044
SE2062Sep03P.png
September 3, 2062
51 52
SE2080Sep13P.png
September 13, 2080
SE2098Sep25P.png
September 25, 2098

Metonic series[]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.[9]

Octon series with 21 events between May 21, 1993 and August 2, 2065
May 20–21 March 8–9 December 25–26 October 13–14 August 1–2
98 100 102 104 106
May 21, 1955 March 9, 1959 December 26, 1962 October 14, 1966 August 2, 1970
108 110 112 114 116
May 21, 1974 March 9, 1978 December 26, 1981 October 14, 1985 August 1, 1989
118 120 122 124 126
SE1993May21P.png
May 21, 1993
SE1997Mar09T.png
March 9, 1997
SE2000Dec25P.png
December 25, 2000
SE2004Oct14P.png
October 14, 2004
SE2008Aug01T.png
August 1, 2008
128 130 132 134 136
SE2012May20A.png
May 20, 2012
SE2016Mar09T.png
March 9, 2016
SE2019Dec26A.png
December 26, 2019
SE2023Oct14A.png
October 14, 2023
SE2027Aug02T.png
August 2, 2027
138 140 142 144 146
SE2031May21A.png
May 21, 2031
SE2035Mar09A.png
March 9, 2035
SE2038Dec26T.png
December 26, 2038
SE2042Oct14A.png
October 14, 2042
SE2046Aug02T.png
August 2, 2046
148 150 152 154 156
SE2050May20H.png
May 20, 2050
SE2054Mar09P.png
March 9, 2054
SE2057Dec26T.png
December 26, 2057
SE2061Oct13A.png
October 13, 2061
SE2065Aug02P.png
August 2, 2065
158 160 162 164 166
SE2069May20P.png
May 20, 2069
March 8, 2073 December 26, 2076 October 13, 2080 August 1, 2084

Notes[]

  1. ^ Espenak, Fred; Jay Anderson (July 2004). "Total Solar Eclipse of 2008 August 01 - Parameters". NASA. Archived from the original on 2007-03-21. Retrieved 2008-08-01.
  2. ^ Jump up to: a b c "Total Solar Eclipse of 2008 August 01". NASA. August 1, 2008. Archived from the original on March 9, 2008. Retrieved 2008-08-01.
  3. ^ Jump up to: a b c "Total eclipse a dark show for thousands". Herald Sun. August 1, 2008. Retrieved 2008-08-01.
  4. ^ Jump up to: a b c d e Espenak, Fred; Jay Anderson (March 2007). Total Eclipse of 2008 August 01 - NASA Technical Bulletin 2007–214149. Retrieved 2008-08-01.
  5. ^ Dr John Mason describing the eclipse directly after observing it
  6. ^ Eclipses and Transits Visible in Gorno-Altaysk. timeanddate.com
  7. ^ Royal Astronomical Society (August 1, 2008). "Solar Eclipse On The Morning Of August 1st". ScienceDaily. Retrieved 2008-08-01.
  8. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  9. ^ Note S1: Eclipses & Predictions in Freeth, Tony (2014). "Eclipse Prediction on the Ancient Greek Astronomical Calculating Machine Known as the Antikythera Mechanism". PLOS ONE. 9 (7): e103275. Bibcode:2014PLoSO...9j3275F. doi:10.1371/journal.pone.0103275. PMC 4116162. PMID 25075747.

References[]

Photos:

Video

Retrieved from ""