Solar eclipse of February 16, 1980

From Wikipedia, the free encyclopedia
Solar eclipse of February 16, 1980
SE1980Feb16T.png
Map
Type of eclipse
NatureTotal
Gamma0.2224
Magnitude1.0434
Maximum eclipse
Duration248 sec (4 m 8 s)
Coordinates0°06′S 47°06′E / 0.1°S 47.1°E / -0.1; 47.1
Max. width of band149 km (93 mi)
Times (UTC)
Greatest eclipse8:54:01
References
Saros130 (50 of 73)
Catalog # (SE5000)9464

A total solar eclipse occurred at the Moon's descending node of the orbit on February 16, 1980. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed central Africa, southern India, and into China at sunset. The southern part of Mount Kilimanjaro, the highest mountain in Africa, also lies in the path of totality. Occurring only about 24 hours before perigee (Perigee on February 17, 1980), the Moon's apparent diameter was larger. This was a Supermoon Total Solar Eclipse because the Moon was just a day before perigee.

Related eclipses[]

Eclipses in 1980[]

  • A total solar eclipse on Saturday, 16 February 1980.
  • A penumbral lunar eclipse on Saturday, 1 March 1980.
  • A penumbral lunar eclipse on Sunday, 27 July 1980.
  • An annular solar eclipse on Sunday, 10 August 1980.
  • A penumbral lunar eclipse on Tuesday, 26 August 1980.

Solar eclipses of 1979–1982[]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1] There were 8 solar eclipses between February 26, 1979 and July 20, 1982. Were there: February 26, 1979 (total solar eclipse, 0.8 days after perigee, 103.9%, 0.89811 gamma, saros 120), August 22, 1979 (small annular solar eclipse, 0.6 days before apogee, 93.3%, -0.96319 gamma, saros 125), February 16, 1980 (total solar eclipse, 1 day before perigee, 104.3%, 0.22244 gamma, saros 130), August 10, 1980 (large annular solar eclipse, 5 days before apogee, 97.3%, -0.19154 gamma, saros 135), February 4, 1981 (large annular solar eclipse, 4 days before perigee, 99.4%, -0.48375 gamma, saros 140), July 31, 1981 (total solar eclipse, 3.8 days after perigee, 102.6%, 0.57917 gamma, saros 145), January 25, 1982 (moderate partial solar eclipse, 4.7 days after apogee, 56.6%, -1.23110 gamma, saros 150) and July 20, 1982 (small partial solar eclipse, 0.9 days after perigee, 46.4%, 1.28859 gamma, saros 155).

Solar eclipse series sets from 1979–1982
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120 SE1979Feb26T.png
1979 February 26
Total
0.89811 125 SE1979Aug22A.png
1979 August 22
Annular
-0.96319
130 SE1980Feb16T.png
1980 February 16
Total
0.22244 135 SE1980Aug10A.png
1980 August 10
Annular
-0.19154
140 SE1981Feb04A.png
1981 February 4
Annular
-0.48375 145 SE1981Jul31T.png
1981 July 31
Total
0.57917
150 SE1982Jan25P.png
1982 January 25
Partial
-1.23110 155 SE1982Jul20P.png
1982 July 20
Partial
1.28859
Partial solar eclipses on June 21, 1982 and December 15, 1982 occur in the next lunar year eclipse set.

Saros 130[]

This eclipse is a part of Saros cycle 130, repeating every 18 years, 11 days, containing 73 events. The series started with partial solar eclipse on August 20, 1096. It contains total eclipses from April 5, 1475 through July 18, 2232. There are no annular eclipses in the series. The series ends at member 73 as a partial eclipse on October 25, 2394. The longest duration of totality was 6 minutes, 41 seconds on July 11, 1619. All eclipses in this series occurs at the Moon’s descending node.[2]

Series members 43–56 between 1853 and 2300
43 44 45
SE1853Nov30T.png
November 30, 1853
SE1871Dec12T.png
December 12, 1871
SE1889Dec22T.png
December 22, 1889
46 47 48
SE1908Jan03T.png
January 3, 1908
SE1926Jan14T.png
January 14, 1926
SE1944Jan25T.png
January 25, 1944
49 50 51
SE1962Feb05T.png
February 5, 1962
SE1980Feb16T.png
February 16, 1980
SE1998Feb26T.png
February 26, 1998
52 53 54
SE2016Mar09T.png
March 9, 2016
SE2034Mar20T.png
March 20, 2034
SE2052Mar30T.png
March 30, 2052
55 56 57
SE2070Apr11T.png
April 11, 2070
SE2088Apr21T.png
April 21, 2088
SE2106May03T.png
May 3, 2106
58 59 60
SE2124May14T.png
May 14, 2124
SE2142May25T.png
May 25, 2142
SE2160Jun04T.png
June 4, 2160
61 62 63
SE2178Jun16T.png
June 16, 2178
SE2196Jun26T.png
June 26, 2196
SE2214Jul08T.png
July 8, 2214
64 65 66
SE2232Jul18T.png
July 18, 2232
SE2250Jul30P.png
July 30, 2250
SE2268Aug09P.png
August 9, 2268
67
SE2286Aug20P.png
August 20, 2286

Tritos series[]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series[]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events, progressing from north to south between July 11, 1953 and July 11, 2029
July 10–12 April 29–30 February 15–16 December 4–5 September 21–23
96 98 100 102 104
July 12, 1915 April 30, 1919 February 15, 1923 December 5, 1926 September 22, 1930
106 108 110 112 114
July 11, 1934 April 30, 1938 February 15, 1942 December 4, 1945 September 22, 1949
116 118 120 122 124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126 128 130 132 134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136 138 140 142 144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146 148 150 152 154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156 158 160 162 164
SE2029Jul11P.png
July 11, 2029
April 29, 2033 February 15, 2037 December 4, 2040 September 21, 2044

Notes[]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "Saros Series catalog of solar eclipses". NASA.

References[]

Retrieved from ""