1 22 polytope

From Wikipedia, the free encyclopedia
Up 1 22 t0 E6.svg
122
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Up 1 22 t1 E6.svg
Rectified 122
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Up 1 22 t2 E6.svg
Birectified 122
CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.png
Up 2 21 t0 E6.svg
221
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Up 2 21 t1 E6.svg
Rectified 221
CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
orthogonal projections in E6 Coxeter plane

In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).[1]

Its Coxeter symbol is 122, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. There are two rectifications of the 122, constructed by positions points on the elements of 122. The rectified 122 is constructed by points at the mid-edges of the 122. The birectified 122 is constructed by points at the triangle face centers of the 122.

These polytopes are from a family of 39 convex uniform polytopes in 6-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

1_22 polytope[]

122 polytope
Type Uniform 6-polytope
Family 1k2 polytope
Schläfli symbol {3,32,2}
Coxeter symbol 122
Coxeter-Dynkin diagram CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png or CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
5-faces 54:
27 121Demipenteract graph ortho.svg
27 121Demipenteract graph ortho.svg
4-faces 702:
270 111Cross graph 4.svg
432 1204-simplex t0.svg
Cells 2160:
1080 1103-simplex t0.svg
1080 {3,3}3-simplex t0.svg
Faces 2160 {3}2-simplex t0.svg
Edges 720
Vertices 72
Vertex figure Birectified 5-simplex:
022 5-simplex t2.svg
Petrie polygon Dodecagon
Coxeter group E6, [[3,32,2]], order 103680
Properties convex, isotopic

The 1_22 polytope contains 72 vertices, and 54 5-demicubic facets. It has a birectified 5-simplex vertex figure. Its 72 vertices represent the root vectors of the simple Lie group E6.

Alternate names[]

  • Pentacontatetra-peton (Acronym Mo) - 54-facetted polypeton (Jonathan Bowers)[2]

Images[]

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
Up 1 22 t0 E6.svg
(1,2)
Up 1 22 t0 D5.svg
(1,3)
Up 1 22 t0 D4.svg
(1,9,12)
B6
[12/2]
A5
[6]
A4
[[5]] = [10]
A3 / D3
[4]
Up 1 22 t0 B6.svg
(1,2)
Up 1 22 t0 A5.svg
(2,3,6)
Up 1 22 t0 A4.svg
(1,2)
Up 1 22 t0 D3.svg
(1,6,8,12)

Construction[]

It is created by a Wythoff construction upon a set of 6 hyperplane mirrors in 6-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on either of 2-length branches leaves the 5-demicube, 131, CDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 5-simplex, 022, CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png.

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[3]

E6 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png k-face fk f0 f1 f2 f3 f4 f5 k-figure notes
A5 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png ( ) f0 72 20 90 60 60 15 15 30 6 6 r{3,3,3} E6/A5 = 72*6!/6! = 72
A2A2A1 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodes x1.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.png { } f1 2 720 9 9 9 3 3 9 3 3 {3}×{3} E6/A2A2A1 = 72*6!/3!/3!/2 = 720
A2A1A1 CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 01.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png {3} f2 3 3 2160 2 2 1 1 4 2 2 s{2,4} E6/A2A1A1 = 72*6!/3!/2/2 = 2160
A3A1 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png {3,3} f3 4 6 4 1080 * 1 0 2 2 1 { }∨( ) E6/A3A1 = 72*6!/4!/2 = 1080
CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 01r.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 4 6 4 * 1080 0 1 2 1 2
A4A1 CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 01r.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png {3,3,3} f4 5 10 10 5 0 216 * * 2 0 { } E6/A4A1 = 72*6!/5!/2 = 216
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 5 10 10 0 5 * 216 * 0 2
D4 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png h{4,3,3} 8 24 32 8 8 * * 270 1 1 E6/D4 = 72*6!/8/4! = 270
D5 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png h{4,3,3,3} f5 16 80 160 80 40 16 0 10 27 * ( ) E6/D5 = 72*6!/16/5! = 27
CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 16 80 160 40 80 0 16 10 * 27

Related complex polyhedron[]

Orthographic projection in Aut(E6) Coxeter plane with 18-gonal symmetry for complex polyhedron, 3{3}3{4}2. It has 72 vertices, 216 3-edges, and 54 3{3}3 faces.

The regular complex polyhedron 3{3}3{4}2, CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel node.png, in has a real representation as the 122 polytope in 4-dimensional space. It has 72 vertices, 216 3-edges, and 54 3{3}3 faces. Its complex reflection group is 3[3]3[4]2, order 1296. It has a half-symmetry quasiregular construction as CDel 3node.pngCDel 3.pngCDel 3node 1.pngCDel 3.pngCDel 3node.png, as a rectification of the Hessian polyhedron, CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png.[4]

Related polytopes and honeycomb[]

Along with the semiregular polytope, 221, it is also one of a family of 39 convex uniform polytopes in 6-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

1k2 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = = E8+ E10 = = E8++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry
(order)
[3−1,2,1] [30,2,1] [31,2,1] [[32,2,1]] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 1,920 103,680 2,903,040 696,729,600
Graph Trigonal hosohedron.png 4-simplex t0.svg Demipenteract graph ortho.svg Up 1 22 t0 E6.svg Up2 1 32 t0 E7.svg Gosset 1 42 polytope petrie.svg - -
Name 1−1,2 102 112 122 132 142 152 162

Geometric folding[]

The 122 is related to the 24-cell by a geometric folding E6 → F4 of Coxeter-Dynkin diagrams, E6 corresponding to 122 in 6 dimensions, F4 to the 24-cell in 4 dimensions. This can be seen in the Coxeter plane projections. The 24 vertices of the 24-cell are projected in the same two rings as seen in the 122.

E6/F4 Coxeter planes
Up 1 22 t0 E6.svg
122
24-cell t3 F4.svg
24-cell
D4/B4 Coxeter planes
Up 1 22 t0 D4.svg
122
24-cell t3 B3.svg
24-cell

Tessellations[]

This polytope is the vertex figure for a uniform tessellation of 6-dimensional space, 222, CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png.

Rectified 1_22 polytope[]

Rectified 122
Type Uniform 6-polytope
Schläfli symbol 2r{3,3,32,1}
r{3,32,2}
Coxeter symbol 0221
Coxeter-Dynkin diagram CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
or CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
5-faces 126
4-faces 1566
Cells 6480
Faces 6480
Edges 6480
Vertices 720
Vertex figure 3-3 duoprism prism
Petrie polygon Dodecagon
Coxeter group E6, [[3,32,2]], order 103680
Properties convex

The rectified 122 polytope (also called 0221) can tessellate 6-dimensional space as the Voronoi cell of the E6* honeycomb lattice (dual of E6 lattice).[5]

Alternate names[]

  • Birectified 221 polytope
  • Rectified pentacontatetrapeton (acronym Ram) - rectified 54-facetted polypeton (Jonathan Bowers)[6]

Images[]

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
Up 1 22 t1 E6.svg Up 1 22 t1 D5.svg Up 1 22 t1 D4.svg Up 1 22 t1 B6.svg
A5
[6]
A4
[5]
A3 / D3
[4]
Up 1 22 t1 A5.svg Up 1 22 t1 A4.svg Up 1 22 t1 D3.svg

Construction[]

Its construction is based on the E6 group and information can be extracted from the ringed Coxeter-Dynkin diagram representing this polytope: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the ring on the short branch leaves the birectified 5-simplex, CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the ring on the either 2-length branch leaves the birectified 5-orthoplex in its alternated form: t2(211), CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The vertex figure is determined by removing the ringed node and ringing the neighboring ring. This makes 3-3 duoprism prism, {3}×{3}×{}, CDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png.

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[7][8]

E6 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png k-face fk f0 f1 f2 f3 f4 f5 k-figure notes
A2A2A1 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodes x0.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.png ( ) f0 720 18 18 18 9 6 18 9 6 9 6 3 6 9 3 2 3 3 {3}×{3}×{ } E6/A2A2A1 = 72*6!/3!/3!/2 = 720
A1A1A1 CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodes 1x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png { } f1 2 6480 2 2 1 1 4 2 1 2 2 1 2 4 1 1 2 2 { }∨{ }∨( ) E6/A1A1A1 = 72*6!/2/2/2 = 6480
A2A1 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png {3} f2 3 3 4320 * * 1 2 1 0 0 2 1 1 2 0 1 2 1 Sphenoid E6/A2A1 = 72*6!/3!/2 = 4320
CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 3 3 * 4320 * 0 2 0 1 1 1 0 2 2 1 1 1 2
A2A1A1 CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 10.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 3 3 * * 2160 0 0 2 0 2 0 1 0 4 1 0 2 2 { }∨{ } E6/A2A1A1 = 72*6!/3!/2/2 = 2160
A2A1 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png {3,3} f3 4 6 4 0 0 1080 * * * * 2 1 0 0 0 1 2 0 { }∨( ) E6/A2A1 = 72*6!/3!/2 = 1080
A3 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png r{3,3} 6 12 4 4 0 * 2160 * * * 1 0 1 1 0 1 1 1 {3} E6/A3 = 72*6!/4! = 2160
A3A1 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 6 12 4 0 4 * * 1080 * * 0 1 0 2 0 0 2 1 { }∨( ) E6/A3A1 = 72*6!/4!/2 = 1080
CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png {3,3} 4 6 0 4 0 * * * 1080 * 0 0 2 0 1 1 0 2
CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png r{3,3} 6 12 0 4 4 * * * * 1080 0 0 0 2 1 0 1 2
A4 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png r{3,3,3} f4 10 30 20 10 0 5 5 0 0 0 432 * * * * 1 1 0 { } E6/A4 = 72*6!/5! = 432
A4A1 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 10 30 20 0 10 5 0 5 0 0 * 216 * * * 0 2 0 E6/A4A1 = 72*6!/5!/2 = 216
A4 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 10 30 10 20 0 0 5 0 5 0 * * 432 * * 1 0 1 E6/A4 = 72*6!/5! = 432
D4 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png h{4,3,3} 24 96 32 32 32 0 8 8 0 8 * * * 270 * 0 1 1 E6/D4 = 72*6!/8/4! = 270
A4A1 CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png r{3,3,3} 10 30 0 20 10 0 0 0 5 5 * * * * 216 0 0 2 E6/A4A1 = 72*6!/5!/2 = 216
A5 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 2r{3,3,3,3} f5 20 90 60 60 0 15 30 0 15 0 6 0 6 0 0 72 * * ( ) E6/A5 = 72*6!/6! = 72
D5 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png rh{4,3,3,3} 80 480 320 160 160 80 80 80 0 40 16 16 0 10 0 * 27 * E6/D5 = 72*6!/16/5! = 27
CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 80 480 160 320 160 0 80 40 80 80 0 0 16 10 16 * * 27

Truncated 1_22 polytope[]

Truncated 122
Type Uniform 6-polytope
Schläfli symbol t{3,32,2}
Coxeter symbol t(122)
Coxeter-Dynkin diagram CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 11.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
or CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
5-faces 72+27+27
4-faces 32+216+432+270+216
Cells 1080+2160+1080+1080+1080
Faces 4320+4320+2160
Edges 6480+720
Vertices 1440
Vertex figure ( )v{3}x{3}
Petrie polygon Dodecagon
Coxeter group E6, [[3,32,2]], order 103680
Properties convex

Alternate names[]

  • Truncated 122 polytope

Construction[]

Its construction is based on the E6 group and information can be extracted from the ringed Coxeter-Dynkin diagram representing this polytope: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 11.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Images[]

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
Up 1 22 t01 E6.svg Up 1 22 t01 D5.svg Up 1 22 t01 D4.svg Up 1 22 t01 B6.svg
A5
[6]
A4
[5]
A3 / D3
[4]
Up 1 22 t01 A5.svg Up 1 22 t01 A4.svg Up 1 22 t01 D3.svg

Birectified 1_22 polytope[]

Birectified 122 polytope
Type Uniform 6-polytope
Schläfli symbol 2r{3,32,2}
Coxeter symbol 2r(122)
Coxeter-Dynkin diagram CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.png
or CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.png
5-faces 126
4-faces 2286
Cells 10800
Faces 19440
Edges 12960
Vertices 2160
Vertex figure
Coxeter group E6, [[3,32,2]], order 103680
Properties convex

Alternate names[]

  • Bicantellated 221
  • Birectified pentacontitetrapeton (barm) (Jonathan Bowers)[9]

Images[]

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
Up 1 22 t2 E6.svg Up 1 22 t2 D5.svg Up 1 22 t2 D4.svg Up 1 22 t2 B6.svg
A5
[6]
A4
[5]
A3 / D3
[4]
Up 1 22 t2 A5.svg Up 1 22 t2 A4.svg Up 1 22 t2 D3.svg

Trirectified 1_22 polytope[]

Trirectified 122 polytope
Type Uniform 6-polytope
Schläfli symbol 3r{3,32,2}
Coxeter symbol 3r(122)
Coxeter-Dynkin diagram CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
or CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.png
5-faces 558
4-faces 4608
Cells 8640
Faces 6480
Edges 2160
Vertices 270
Vertex figure
Coxeter group E6, [[3,32,2]], order 103680
Properties convex

Alternate names[]

  • Tricantellated 221
  • Trirectified pentacontitetrapeton (trim or cacam) (Jonathan Bowers)[10]


See also[]

  • List of E6 polytopes

Notes[]

  1. ^ Elte, 1912
  2. ^ Klitzing, (o3o3o3o3o *c3x - mo)
  3. ^ Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
  4. ^ Coxeter, H. S. M., Regular Complex Polytopes, second edition, Cambridge University Press, (1991). p.30 and p.47
  5. ^ The Voronoi Cells of the E6* and E7* Lattices Archived 2016-01-30 at the Wayback Machine, Edward Pervin
  6. ^ Klitzing, (o3o3x3o3o *c3o - ram)
  7. ^ Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
  8. ^ Klitzing, Richard. "6D convex uniform polypeta o3o3x3o3o *c3o - ram".
  9. ^ Klitzing, (o3x3o3x3o *c3o - barm)
  10. ^ Klitzing, (x3o3o3o3x *c3o - cacam

References[]

  • Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
  • H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p334 (figure 3.6a) by Peter mcMullen: (12-gonal node-edge graph of 122)
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". o3o3o3o3o *c3x - mo, o3o3x3o3o *c3o - ram, o3x3o3x3o *c3o - barm
hide
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Retrieved from ""