6-demicube

From Wikipedia, the free encyclopedia
Demihexeract
(6-demicube)
Demihexeract ortho petrie.svg
Petrie polygon projection
Type Uniform 6-polytope
Family demihypercube
Schläfli symbol {3,33,1} = h{4,34}
s{21,1,1,1,1}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 01r.pngCDel 3ab.pngCDel nodes.pngCDel split5c.pngCDel nodes.png = CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split5c.pngCDel nodes 10l.png

CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.png

Coxeter symbol 131
5-faces 44 12 {31,2,1}Demipenteract graph ortho.svg
32 {34}5-simplex t0.svg
4-faces 252 60 {31,1,1}Cross graph 4.svg
192 {33}4-simplex t0.svg
Cells 640 160 {31,0,1}3-simplex t0.svg
480 {3,3}3-simplex t0.svg
Faces 640 {3}2-simplex t0.svg
Edges 240
Vertices 32
Vertex figure Rectified 5-simplex
5-simplex t1.svg
Symmetry group D6, [33,1,1] = [1+,4,34]
[25]+
Petrie polygon decagon
Properties convex

In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM6 for a 6-dimensional half measure polytope.

Coxeter named this polytope as 131 from its Coxeter diagram, with a ring on one of the 1-length branches, CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png. It can named similarly by a 3-dimensional exponential Schläfli symbol or {3,33,1}.

Cartesian coordinates[]

Cartesian coordinates for the vertices of a demihexeract centered at the origin are alternate halves of the hexeract:

(±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

As a configuration[]

This configuration matrix represents the 6-demicube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-demicube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.[3]

D6 CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png k-face fk f0 f1 f2 f3 f4 f5 k-figure notes
A4 CDel nodea x.pngCDel 2.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png ( ) f0 32 15 60 20 60 15 30 6 6 r{3,3,3,3} D6/A4 = 32*6!/5! = 32
A3A1A1 CDel nodea 1.pngCDel 2.pngCDel nodes x0.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png { } f1 2 240 8 4 12 6 8 4 2 {}x{3,3} D6/A3A1A1 = 32*6!/4!/2/2 = 240
A3A2 CDel nodea 1.pngCDel 3a.pngCDel nodes 0x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.png {3} f2 3 3 640 1 3 3 3 3 1 {3}v( ) D6/A3A2 = 32*6!/4!/3! = 640
A3A1 CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.png h{4,3} f3 4 6 4 160 * 3 0 3 0 {3} D6/A3A1 = 32*6!/4!/2 = 160
A3A2 CDel nodea 1.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png {3,3} 4 6 4 * 480 1 2 2 1 {}v( ) D6/A3A2 = 32*6!/4!/3! = 480
D4A1 CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png h{4,3,3} f4 8 24 32 8 8 60 * 2 0 { } D6/D4A1 = 32*6!/8/4!/2 = 60
A4 CDel nodea 1.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png {3,3,3} 5 10 10 0 5 * 192 1 1 D6/A4 = 32*6!/5! = 192
D5 CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png h{4,3,3,3} f5 16 80 160 40 80 10 16 12 * ( ) D6/D5 = 32*6!/16/5! = 12
A5 CDel nodea 1.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png {3,3,3,3} 6 15 20 0 15 0 6 * 32 D6/A5 = 32*6!/6! = 32

Images[]

orthographic projections
Coxeter plane B6
Graph 6-demicube t0 B6.svg
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph 6-demicube t0 D6.svg 6-demicube t0 D5.svg
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph 6-demicube t0 D4.svg 6-demicube t0 D3.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-demicube t0 A5.svg 6-demicube t0 A3.svg
Dihedral symmetry [6] [4]

Related polytopes[]

There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:

D6 polytopes
6-demicube t0 D6.svg
h{4,34}
6-demicube t01 D6.svg
h2{4,34}
6-demicube t02 D6.svg
h3{4,34}
6-demicube t03 D6.svg
h4{4,34}
6-demicube t04 D6.svg
h5{4,34}
6-demicube t012 D6.svg
h2,3{4,34}
6-demicube t013 D6.svg
h2,4{4,34}
6-demicube t014 D6.svg
h2,5{4,34}
6-demicube t023 D6.svg
h3,4{4,34}
6-demicube t024 D6.svg
h3,5{4,34}
6-demicube t034 D6.svg
h4,5{4,34}
6-demicube t0123 D6.svg
h2,3,4{4,34}
6-demicube t0124 D6.svg
h2,3,5{4,34}
6-demicube t0134 D6.svg
h2,4,5{4,34}
6-demicube t0234 D6.svg
h3,4,5{4,34}
6-demicube t01234 D6.svg
h2,3,4,5{4,34}

The 6-demicube, 131 is third in a dimensional series of uniform polytopes, expressed by Coxeter as k31 series. The fifth figure is a Euclidean honeycomb, 331, and the final is a noncompact hyperbolic honeycomb, 431. Each progressive uniform polytope is constructed from the previous as its vertex figure.

k31 dimensional figures
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 = E7+ =E7++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [33,3,1] [34,3,1]
Order 48 720 23,040 2,903,040
Graph Tetrahedral prism.png 5-simplex t1.svg Demihexeract ortho petrie.svg Up2 2 31 t0 E7.svg - -
Name −131 031 131 231 331 431

It is also the second in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The fourth figure is the Euclidean honeycomb 133 and the final is a noncompact hyperbolic honeycomb, 134.

13k dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 =E7+ =E7++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [[33,3,1]] [34,3,1]
Order 48 720 23,040 2,903,040
Graph 5-simplex t0.svg Demihexeract ortho petrie.svg Up2 1 32 t0 E7.svg - -
Name 13,-1 130 131 132 133

Skew icosahedron[]

Coxeter identified a subset of 12 vertices that form a regular skew icosahedron {3, 5} with the same symmetries as the icosahedron itself, but at different angles. He dubbed this the regular skew icosahedron.[4][5]

References[]

  1. ^ Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. ^ Coxeter, Complex Regular Polytopes, p.117
  3. ^ Klitzing, Richard. "x3o3o *b3o3o3o - hax".
  4. ^ Coxeter, H. S. M. The beauty of geometry : twelve essays (Dover ed.). Dover Publications. pp. 450–451. ISBN 9780486409191.
  5. ^ Deza, Michael; Shtogrin, Mikhael (2000). "Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices". Advanced Studies in Pure Mathematics: 77. doi:10.2969/aspm/02710073. Retrieved 4 April 2020.
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Klitzing, Richard. "6D uniform polytopes (polypeta) x3o3o *b3o3o3o – hax".

External links[]

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Retrieved from ""