2 41 polytope

From Wikipedia, the free encyclopedia
4 21 t0 E6.svg
421
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1 42 polytope E6 Coxeter plane.svg
142
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
2 41 t0 E6.svg
241
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
4 21 t1 E6.svg
Rectified 421
CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
4 21 t4 E6.svg
Rectified 142
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
2 41 t1 E6.svg
Rectified 241
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.png
4 21 t2 E6.svg
Birectified 421
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
4 21 t3 E6.svg
Trirectified 421
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Orthogonal projections in E6 Coxeter plane

In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group.

Its Coxeter symbol is 241, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequences.

The rectified 241 is constructed by points at the mid-edges of the 241. The birectified 241 is constructed by points at the triangle face centers of the 241, and is the same as the rectified 142.

These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8-dimensions, made of uniform polytope facets, defined by all permutations of rings in this Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

241 polytope[]

241 polytope
Type Uniform 8-polytope
Family 2k1 polytope
Schläfli symbol {3,3,34,1}
Coxeter symbol 241
Coxeter diagram CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-faces 17520:
240 231Gosset 2 31 polytope.svg
17280 {36}7-simplex t0.svg
6-faces 144960:
6720 221E6 graph.svg
138240 {35}6-simplex t0.svg
5-faces 544320:
60480 211Cross graph 5.svg
483840 {34}5-simplex t0.svg
4-faces 1209600:
241920 {2014-simplex t0.svg
967680 {33}4-simplex t0.svg
Cells 1209600 {32}3-simplex t0.svg
Faces 483840 {3}2-simplex t0.svg
Edges 69120
Vertices 2160
Vertex figure 141
Petrie polygon 30-gon
Coxeter group E8, [34,2,1]
Properties convex

The 241 is composed of 17,520 facets (240 231 polytopes and 17,280 7-simplices), 144,960 6-faces (6,720 221 polytopes and 138,240 6-simplices), 544,320 5-faces (60,480 211 and 483,840 5-simplices), 1,209,600 4-faces (4-simplices), 1,209,600 cells (tetrahedra), 483,840 faces (triangles), 69,120 edges, and 2160 vertices. Its vertex figure is a 7-demicube.

This polytope is a facet in the uniform tessellation, 251 with Coxeter-Dynkin diagram:

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Alternate names[]

  • E. L. Elte named it V2160 (for its 2160 vertices) in his 1912 listing of semiregular polytopes.[1]
  • It is named 241 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
  • Diacositetracont-myriaheptachiliadiacosioctaconta-zetton (Acronym Bay) - 240-17280 facetted polyzetton (Jonathan Bowers)[2]

Coordinates[]

The 2160 vertices can be defined as follows:

16 permutations of (±4,0,0,0,0,0,0,0) of (8-orthoplex)
1120 permutations of (±2,±2,±2,±2,0,0,0,0) of (trirectified 8-orthoplex)
1024 permutations of (±3,±1,±1,±1,±1,±1,±1,±1) with an odd number of minus-signs

Construction[]

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram: CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the short branch leaves the 7-simplex: CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png. There are 17280 of these facets

Removing the node on the end of the 4-length branch leaves the 231, CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png. There are 240 of these facets. They are centered at the positions of the 240 vertices in the 421 polytope.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 7-demicube, 141, CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[3]

E8 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png k-face fk f0 f1 f2 f3 f4 f5 f6 f7 k-figure notes
D7 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png ( ) f0 2160 64 672 2240 560 2240 280 1344 84 448 14 64 h{4,3,3,3,3,3} E8/D7 = 192*10!/64/7! = 2160
A6A1 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea 1.png { } f1 2 69120 21 105 35 140 35 105 21 42 7 7 r{3,3,3,3,3} E8/A6A1 = 192*10!/7!/2 = 69120
A4A2A1 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodes x0.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3} f2 3 3 483840 10 5 20 10 20 10 10 5 2 {}x{3,3,3} E8/A4A2A1 = 192*10!/5!/3!/2 = 483840
A3A3 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3,3} f3 4 6 4 1209600 1 4 4 6 6 4 4 1 {3,3}V( ) E8/A3A3 = 192*10!/4!/4! = 1209600
A4A3 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3,3,3} f4 5 10 10 5 241920 * 4 0 6 0 4 0 {3,3} E8/A4A3 = 192*10!/5!/4! = 241920
A4A2 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png 5 10 10 5 * 967680 1 3 3 3 3 1 {3}V( ) E8/A4A2 = 192*10!/5!/3! = 967680
D5A2 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3,3,31,1} f5 10 40 80 80 16 16 60480 * 3 0 3 0 {3} E8/D5A2 = 192*10!/16/5!/2 = 40480
A5A1 CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3,3,3,3} 6 15 20 15 0 6 * 483840 1 2 2 1 { }V( ) E8/A5A1 = 192*10!/6!/2 = 483840
E6A1 CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3,3,32,1} f6 27 216 720 1080 216 432 27 72 6720 * 2 0 { } E8/E6A1 = 192*10!/72/6! = 6720
A6 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3,3,3,3,3} 7 21 35 35 0 21 0 7 * 138240 1 1 E8/A6 = 192*10!/7! = 138240
E7 CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3,3,33,1} f7 126 2016 10080 20160 4032 12096 756 4032 56 576 240 * ( ) E8/E7 = 192*10!/72!/8! = 240
A7 CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png {3,3,3,3,3,3} 8 28 56 70 0 56 0 28 0 8 * 17280 E8/A7 = 192*10!/8! = 17280

Images[]

Shown in 3D projection using the basis vectors [u,v,w] giving H3 symmetry:
  • u = (1, φ, 0, −1, φ, 0,0,0)
  • v = (φ, 0, 1, φ, 0, −1,0,0)
  • w = (0, 1, φ, 0, −1, φ,0,0)
The 2160 projected 241 polytope vertices are sorted and tallied by their 3D norm generating the increasingly transparent hulls for each set of tallied norms. The overlapping vertices are color coded by overlap count. Also shown is a list of each hull group, the Norm'd distance from the origin, and the number of vertices in the goup.
The 2160 projected 241 polytope projected to 3D (as above) with each Norm'd hull group listed individually with vertex counts. Notice the last two outer hulls are a combination of two overlapped Icosahedrons (24) and a Icosidodecahedron (30).

Petrie polygon projections can be 12, 18, or 30-sided based on the E6, E7, and E8 symmetries. The 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown.

E8
[30]
[20] [24]
2 41 t0 E8.svg
(1)
2 41 t0 p20.svg 2 41 t0 p24.svg
E7
[18]
E6
[12]
[6]
2 41 t0 E7.svg 2 41 t0 E6.svg
(1,8,24,32)
2 41 t0 mox.svg
D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
2 41 t0 B2.svg 2 41 t0 B3.svg 2 41 t0 B4.svg
D6 / B5 / A4
[10]
D7 / B6
[12]
D8 / B7 / A6
[14]
2 41 t0 B5.svg 2 41 t0 B6.svg
(1,3,9,12,18,21,36)
2 41 t0 B7.svg
B8
[16/2]
A5
[6]
A7
[8]
2 41 t0 B8.svg 2 41 t0 A5.svg 2 41 t0 A7.svg

Related polytopes and honeycombs[]

2k1 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = = E8+ E10 = = E8++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3−1,2,1] [30,2,1] [[31,2,1]] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 384 51,840 2,903,040 696,729,600
Graph Trigonal dihedron.png 4-simplex t0.svg 5-cube t4.svg Up 2 21 t0 E6.svg Up2 2 31 t0 E7.svg 2 41 t0 E8.svg - -
Name 2−1,1 201 211 221 231 241 251 261

Rectified 2_41 polytope[]

Rectified 241 polytope
Type Uniform 8-polytope
Schläfli symbol t1{3,3,34,1}
Coxeter symbol t1(241)
Coxeter diagram CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-faces 19680 total:

240 t1(221)
17280 t1{36}
2160 141

6-faces 313440
5-faces 1693440
4-faces 4717440
Cells 7257600
Faces 5322240
Edges 19680
Vertices 69120
Vertex figure rectified 6-simplex prism
Petrie polygon 30-gon
Coxeter group E8, [34,2,1]
Properties convex

The rectified 241 is a rectification of the 241 polytope, with vertices positioned at the mid-edges of the 241.

Alternate names[]

  • Rectified Diacositetracont-myriaheptachiliadiacosioctaconta-zetton for rectified 240-17280 facetted polyzetton (known as robay for short)[4][5]

Construction[]

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space, defined by root vectors of the E8 Coxeter group.

The facet information can be extracted from its Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the short branch leaves the rectified 7-simplex: CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 4-length branch leaves the rectified 231, CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 2-length branch leaves the 7-demicube, 141CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the rectified 6-simplex prism, CDel nodea 1.pngCDel 2.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Visualizations[]

Petrie polygon projections can be 12, 18, or 30-sided based on the E6, E7, and E8 symmetries. The 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown.

E8
[30]
[20] [24]
2 41 t1 E8.svg
(1)
2 41 t1 p20.svg 2 41 t1 p24.svg
E7
[18]
E6
[12]
[6]
2 41 t1 E7.svg 2 41 t1 E6.svg
(1,8,24,32)
2 41 t1 mox.svg
D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
2 41 t1 B2.svg 2 41 t1 B3.svg 2 41 t1 B4.svg
D6 / B5 / A4
[10]
D7 / B6
[12]
D8 / B7 / A6
[14]
2 41 t1 B5.svg 2 41 t1 B6.svg
(1,3,9,12,18,21,36)
2 41 t1 B7.svg
B8
[16/2]
A5
[6]
A7
[8]
2 41 t1 B8.svg 2 41 t1 A5.svg 2 41 t1 A7.svg

See also[]

  • List of E8 polytopes

Notes[]

  1. ^ Elte, 1912
  2. ^ Klitzing, (x3o3o3o *c3o3o3o3o - bay)
  3. ^ Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
  4. ^ Jonathan Bowers
  5. ^ Klitzing, (o3x3o3o *c3o3o3o3o - robay)

References[]

  • Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
  • H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Klitzing, Richard. "8D Uniform polyzetta". x3o3o3o *c3o3o3o3o - bay, o3x3o3o *c3o3o3o3o - robay
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Retrieved from ""