Cellobiose dehydrogenase (acceptor)
cellobiose dehydrogenase (acceptor) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.1.99.18 | ||||||||
CAS no. | 54576-85-1 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
In enzymology, a cellobiose dehydrogenase (acceptor) (EC 1.1.99.18) is an enzyme that catalyzes the chemical reaction
- cellobiose + acceptor cellobiono-1,5-lactone + reduced acceptor
Thus, the two substrates of this enzyme are cellobiose and acceptor, whereas its two products are and reduced acceptor.
This enzyme belongs to the family of oxidoreductases, to be specific those acting on the CH-OH group of donor with other acceptors. The systematic name of this enzyme class is cellobiose:acceptor 1-oxidoreductase. Other names in common use include cellobiose dehydrogenase, cellobiose oxidoreductase, Phanerochaete chrysosporium cellobiose oxidoreductase, CBOR, cellobiose oxidase, cellobiose:oxygen 1-oxidoreductase, CDH, and cellobiose:(acceptor) 1-oxidoreductase. It employs sometimes one cofactor, FAD, but in most cases both a heme and a FAD located in separate domains. It makes the enzyme to one of the more complex extracellular oxidoreductases. It is produced by wood degrading organisms.[1]
Structural studies[]
To date, structures of the separated flavin and heme containing domains were reported (PDB accession codes 1NAA[2] and 1PL3[3]). In 2015, full-length structures of the enzyme were resolved (accession codes 4QI6 and 4QI7).[4]
References[]
- ^ Westermark, Ulla; Eriksson, Karl-Erik; Daasvatn, Kari; Liaaen-Jensen, Synnøve; Enzell, Curt R.; Mannervik, Bengt (1974). "Cellobiose:Quinone Oxidoreductase, a New Wood-degrading Enzyme from White-rot Fungi". Acta Chemica Scandinavica. 28b: 209–214. doi:10.3891/acta.chem.scand.28b-0209.
- ^ Martin Hallberg, B; Henriksson, Gunnar; Pettersson, Göran; Divne, Christina (2002-01-18). "Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase1". Journal of Molecular Biology. 315 (3): 421–434. doi:10.1006/jmbi.2001.5246. PMID 11786022.
- ^ Rotsaert, Frederik A. J.; Hallberg, B. Martin; Vries, Simon de; Moenne-Loccoz, Pierre; Divne, Christina; Renganathan, V.; Gold, Michael H. (2003-08-29). "Biophysical and Structural Analysis of a Novel Heme b Iron Ligation in the Flavocytochrome Cellobiose Dehydrogenase". Journal of Biological Chemistry. 278 (35): 33224–33231. doi:10.1074/jbc.M302653200. ISSN 0021-9258. PMID 12796496.
- ^ Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C (July 2015). "Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation". Nat. Commun. 6: 7542. Bibcode:2015NatCo...6.7542T. doi:10.1038/ncomms8542. PMC 4507011. PMID 26151670.
- EC 1.1.99
- Flavin enzymes
- Enzymes of known structure
- EC 1.1 stubs