Hydrogen deuteride

From Wikipedia, the free encyclopedia
Skeletal formula of hydrogen deuteride
Hydrogen-deuteride-3D-vdW.png
Names
IUPAC name
Hydrogen deuteride
Systematic IUPAC name
(2H)Dihydrogen[citation needed]
Identifiers
  • 13983-20-5 checkY
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.034.325 Edit this at Wikidata
EC Number
  • 237-773-0
UN number 1049
Properties
H[2H]
Molar mass 3.02204 g mol−1
Melting point −259 °C (−434.2 °F; 14.1 K)
Boiling point −253 °C (−423.4 °F; 20.1 K)
Hazards
EU classification (DSD) (outdated)
Extremely Flammable F+
R-phrases (outdated) R12
S-phrases (outdated) S16, S33, S36, S38
NFPA 704 (fire diamond)
0
4
0
571 °C (1,060 °F; 844 K)
Related compounds
Related hydrogens
Deuterium

Hydrogen
Tritium

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY  (what is checkY☒N ?)
Infobox references

Hydrogen deuteride is a diatomic molecule substance or compound of two isotopes of hydrogen: the majority isotope 1H (protium) and 2H (deuterium). Its proper molecular formula is H2H, but for simplification, it is usually written as HD.

Preparation and occurrence[]

In the laboratory it is produced by treating sodium hydride with deuterated water:[1]

NaH + D2O → HD + NaOD

Hydrogen deuteride is a minor component of naturally occurring molecular hydrogen. It is one of the minor but noticeable components of the atmospheres of all the giant planets, with abundances from about 30 ppm to about 200 ppm. HD has also been found in supernova remnants,[2] and other sources.[citation needed]

Occurrence of HD vs. H2 in giant planets' atmospheres
Planet HD H2[citation needed]
Jupiter ~0.003% 89.8% ±2.0%
Uranus ~0.007% 83.0% ±3.0%
Neptune ~0.019% 80.0% ±3.2%
H NMR spectrum of a solution of HD (labeled with red bars) and H2 (blue bar). The 1:1:1 triplet arises from the coupling of the 1H nucleus (I = 1/2) to the 2H nucleus ( I = 1).

Radio emission spectra[]

HD and H2 have very similar emission spectra, but the emission frequencies differ.[3]

The frequency of the astronomically important J = 1-0 rotational transition of HD at 2.7 THz has been measured with tunable FIR radiation with an accuracy of 150 kHz.[4]


References[]

  1. ^ Bautista, Maria T.; Cappellani, E. Paul; Drouin, Samantha D.; Morris, Robert H.; Schweitzer, Caroline T.; Sella, Andrea; Zubkowski, Jeffery (1991). "Preparation and Spectroscopic Properties of the η2-Dihydrogen Complexes [MH(η2-H2)PR2CH2CH2PR2)2]+ (M = Iron, Ruthenium; R = Ph, Et) and Trends in Properties Down the Iron Group Triad". Journal of the American Chemical Society. 113 (13): 4876–87. doi:10.1021/ja00013a025.CS1 maint: uses authors parameter (link)
  2. ^ Neufeld, David A.; Hollenbach, David J.; Kaufman, Michael J.; Snell, Ronald L.; Melnick, Gary J.; Bergin, Edwin A.; Sonnentrucker, Paule (2007). "SpitzerSpectral Line Mapping of Supernova Remnants. I. Basic Data and Principal Component Analysis". The Astrophysical Journal. 664 (2): 890–908. arXiv:0704.2179. Bibcode:2007ApJ...664..890N. doi:10.1086/518857. S2CID 15286019.
  3. ^ Quinn, W.; Baker, J.; Latourrette, J.; Ramsey, N. (1958). "Radio-Frequency Spectra of Hydrogen Deuteride in Strong Magnetic Fields". Phys. Rev. 112 (6): 1929. Bibcode:1958PhRv..112.1929Q. doi:10.1103/PhysRev.112.1929.
  4. ^ Evenson, K. M.; Jennings, D. A.; Brown, J. M.; Zink, L. R.; Leopold, K. R. (1988). "Frequency measurement of the J = 1-0 rotational transition of HD". Astrophysical Journal. 330: L135. Bibcode:1988ApJ...330L.135E. doi:10.1086/185221.

Further reading[]

Retrieved from ""