Solar eclipse of June 11, 1983

From Wikipedia, the free encyclopedia
Solar eclipse of June 11, 1983
SE1983Jun11T.png
Map
Type of eclipse
NatureTotal
Gamma-0.4947
Magnitude1.0524
Maximum eclipse
Duration311 sec (5 m 11 s)
Coordinates6°12′S 114°12′E / 6.2°S 114.2°E / -6.2; 114.2
Max. width of band199 km (124 mi)
Times (UTC)
Greatest eclipse4:43:33
References
Saros127 (56 of 82)
Catalog # (SE5000)9472

A total solar eclipse occurred at the Moon's ascending node of the orbit on June 11, 1983. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 48 hours before perigee (Perigee on June 13, 1983), the Moon's apparent diameter was larger.

The path of totality went through Christmas Islands, Indonesia, Papua New Guinea, and terminated in Vanuatu. Maximum eclipse occurred off the Indonesian island of Madura. Major Indonesian cities witnessed totality, including Yogyakarta, Semarang, Surabaya, and Makassar, in addition to Port Moresby in Papua New Guinea.

Related eclipses[]

Eclipses in 1983[]

Solar eclipses of 1982–1985[]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Note: Partial solar eclipses on January 25, 1982 and July 20, 1982 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1982–1985
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 SE1982Jun21P.png
1982 June 21
Partial
-1.21017 122 SE1982Dec15P.png
1982 December 15
Partial
1.12928
127 SE1983Jun11T.png
1983 June 11
Total
-0.49475 132 SE1983Dec04A.png
1983 December 4
Annular
0.40150
137 SE1984May30A.png
1984 May 30
Annular
0.27552 142
Solar eclipse of 22 November 1984.JPG
Partial from Gisborne, NZ
SE1984Nov22T.png
1984 November 22
Total
-0.31318
147 SE1985May19P.png
1985 May 19
Partial
1.07197 152 SE1985Nov12T.png
1985 November 12
Total
-0.97948

Saros 127[]

It is a part of Saros cycle 127, repeating every 18 years, 11 days, containing 82 events. The series started with partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular eclipses in this series. The series ends at member 82 as a partial eclipse on March 21, 2452. The longest duration of totality was 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occurs at the Moon’s ascending node.[2]

Series members 52–68 occur between 1901 and 2200
52 53 54
SE1911Apr28T.png
April 28, 1911
SE1929May09T.png
May 9, 1929
SE1947May20T.png
May 20, 1947
55 56 57
SE1965May30T.png
May 30, 1965
SE1983Jun11T.png
June 11, 1983
SE2001Jun21T.png
June 21, 2001
58 59 60
SE2019Jul02T.png
July 2, 2019
SE2037Jul13T.png
July 13, 2037
SE2055Jul24T.png
July 24, 2055
61 62 63
SE2073Aug03T.png
August 3, 2073
SE2091Aug15T.png
August 15, 2091
August 26, 2109 (Partial)
64 65 66
September 6, 2127 (Partial September 16, 2145 (Partial) September 28, 2163 (Partial)
67 68
October 8, 2181 (Partial) October 19, 2199 (Partial)

Metonic series[]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between June 10, 1964, and August 21, 2036
June 10–11 March 27–29 January 15–16 November 3 August 21–22
117 119 121 123 125
SE1964Jun10P.png
June 10, 1964
SE1968Mar28P.png
March 28, 1968
SE1972Jan16A.png
January 16, 1972
SE1975Nov03P.png
November 3, 1975
SE1979Aug22A.png
August 22, 1979
127 129 131 133 135
SE1983Jun11T.png
June 11, 1983
SE1987Mar29H.png
March 29, 1987
SE1991Jan15A.png
January 15, 1991
SE1994Nov03T.png
November 3, 1994
SE1998Aug22A.png
August 22, 1998
137 139 141 143 145
SE2002Jun10A.png
June 10, 2002
SE2006Mar29T.png
March 29, 2006
SE2010Jan15A.png
January 15, 2010
SE2013Nov03H.png
November 3, 2013
SE2017Aug21T.png
August 21, 2017
147 149 151 153 155
SE2021Jun10A.png
June 10, 2021
SE2025Mar29P.png
March 29, 2025
SE2029Jan14P.png
January 14, 2029
SE2032Nov03P.png
November 3, 2032
SE2036Aug21P.png
August 21, 2036

Inex series[]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Notes[]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "Solar Saros series 127". NASA Goddard Space Flight Center. NASA. Retrieved 2 November 2017.

References[]

Photos:

Retrieved from ""