Solar eclipse of June 20, 1955

From Wikipedia, the free encyclopedia
Solar eclipse of June 20, 1955
SE1955Jun20T.png
Map
Type of eclipse
NatureTotal
Gamma-0.1528
Magnitude1.0776
Maximum eclipse
Duration428 sec (7 m 8 s)
Coordinates14°48′N 117°00′E / 14.8°N 117°E / 14.8; 117
Max. width of band254 km (158 mi)
Times (UTC)
Greatest eclipse4:10:42
References
Saros136 (34 of 71)
Catalog # (SE5000)9410

A total solar eclipse occurred on June 20, 1955. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. With a maximum duration of 7 minutes 7.74 seconds, this is the longest solar eclipse of saros series 136, as well as the longest total solar eclipse since the 11th century, and until the 22nd century, because greatest eclipse occurred near the Equator.[1] Totality beginning over the Indian Ocean, British Seychelles (today's Seychelles) and Maldives, crossing Ceylon (name changed to Sri Lanka later) including the capital city Colombo, Andaman Islands, Burma, Thailand including the capital city Bangkok, Cambodia, Laos, South Vietnam (now belonging to Vietnam), Paracel Islands and Scarborough Shoal (near the greatest eclipse), moving across the Philippines including the capital city Manila, Kayangel Atoll in the Trust Territory of the Pacific Islands (now belonging to Palau), Nukumanu Islands in the Territory of Papua New Guinea (today's Papua New Guinea), towards northern Ontong Java Atoll in British Solomon Islands (today's Solomon Islands) ending over Southwestern Pacific Ocean. It was the second central solar eclipse visible from Bangkok from 1948 to 1958, where it is rare for a large city to witness 4 central solar eclipses in just 9.945 years.

Related eclipses[]

Solar eclipses of 1953–1956[]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]

Note: Partial solar eclipse of February 14, 1953 and August 9, 1953 belong to the last lunar year set.

Solar eclipse series sets from 1953–1956
Descending node   Ascending node
Saros Map Saros Map
116 SE1953Jul11P.png
1953 July 11
Partial
121 SE1954Jan05A.png
1954 January 5
Annular
126 SE1954Jun30T.png
1954 June 30
Total
131 SE1954Dec25A.png
1954 December 25
Annular
136 SE1955Jun20T.png
1955 June 20
Total
141 SE1955Dec14A.png
1955 December 14
Annular
146 SE1956Jun08T.png
1956 June 8
Total
151 SE1956Dec02P.png
1956 December 2
Partial

Saros 136[]

Solar Saros 136, repeating every 18 years, 11 days, contains 71 events. The series started with partial solar eclipse on June 14, 1360, and reached a first annular eclipse on September 8, 1504. It was a hybrid event from November 22, 1612, through January 17, 1703, and total eclipses from January 27, 1721, through May 13, 2496. The series ends at member 71 as a partial eclipse on July 30, 2622, with the entire series lasting 1262 years. The longest eclipse occurred on June 20, 1955, with a maximum duration of totality at 7 minutes, 7.74 seconds. All eclipses in this series occurs at the Moon's descending node.[3]

Series members 29–43 occur between 1865 and 2117
29 30 31
SE1865Apr25T.gif
Apr 25, 1865
SE1883May06T.png
May 6, 1883
SE1901May18T.png
May 18, 1901
32 33 34
SE1919May29T.png
May 29, 1919
SE1937Jun08T.png
Jun 8, 1937
SE1955Jun20T.png
Jun 20, 1955
35 36 37
SE1973Jun30T.png
Jun 30, 1973
SE1991Jul11T.png
Jul 11, 1991
SE2009Jul22T.png
Jul 22, 2009
38 39 40
SE2027Aug02T.png
Aug 2, 2027
SE2045Aug12T.png
Aug 12, 2045
SE2063Aug24T.png
Aug 24, 2063
41 42 43
SE2081Sep03T.png
Sep 3, 2081
SE2099Sep14T.png
Sep 14, 2099
SE2117Sep26T.png
Sep 26, 2117

Inex series[]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series[]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

Notes[]

  1. ^ Fred Espenak. "Catalog of Solar Eclipses: 1001 to 1100". NASA.
  2. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. ^ SEsaros136 at NASA.gov

References[]

Retrieved from ""