Solar eclipse of October 10, 1912

From Wikipedia, the free encyclopedia
Solar eclipse of October 10, 1912
SE1912Oct10T.png
Map
Type of eclipse
NatureTotal
Gamma-0.4149
Magnitude1.0229
Maximum eclipse
Duration115 sec (1 m 55 s)
Coordinates28°06′S 40°06′W / 28.1°S 40.1°W / -28.1; -40.1
Max. width of band85 km (53 mi)
Times (UTC)
Greatest eclipse13:36:14
References
Saros142 (17 of 72)
Catalog # (SE5000)9309

A total solar eclipse occurred on October 10, 1912. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Ecuador, Colombia, northern tip of Peru and Brazil.

Related eclipses[]

Solar eclipses 1910–1913[]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 1910–1913
Ascending node   Descending node
117 May 9, 1910
SE1910May09T.png
Total
122 November 2, 1910
SE1910Nov02P.png
Partial
127 April 28, 1911
SE1911Apr28T.png
Total
132 October 22, 1911
SE1911Oct22A.png
Annular
137 April 17, 1912
SE1912Apr17H.png
Hybrid
142 October 10, 1912
SE1912Oct10T.png
Total
147 April 6, 1913
SE1913Apr06P.png
Partial
152 September 30, 1913
SE1913Sep30P.png
Partial


Saros series 142[]

It is a part of Saros cycle 142, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on April 17, 1624. It contains one hybrid eclipse on July 14, 1768, and total eclipses from July 25, 1786 through October 29, 2543. The series ends at member 72 as a partial eclipse on June 5, 2904. The longest duration of totality will be 6 minutes, 34 seconds on May 28, 2291. All eclipses in this series occurs at the Moon’s descending node.[2]

Series members 17–41 occur between 1901 and 2359
17 18 19
SE1912Oct10T.png
October 10, 1912
SE1930Oct21T.png
October 21, 1930
SE1948Nov01T.png
November 1, 1948
20 21 22
SE1966Nov12T.png
November 12, 1966
SE1984Nov22T.png
November 22, 1984
SE2002Dec04T.png
December 4, 2002
23 24 25
SE2020Dec14T.png
December 14, 2020
SE2038Dec26T.png
December 26, 2038
SE2057Jan05T.png
January 5, 2057
26 27 28
SE2075Jan16T.png
January 16, 2075
SE2093Jan27T.png
January 27, 2093
SE2111Feb08T.png
February 8, 2111
29 30 31
SE2129Feb18T.png
February 18, 2129
SE2147Mar02T.png
March 2, 2147
SE2165Mar12T.png
March 12, 2165
32 33 34
SE2183Mar23T.png
March 23, 2183
SE2201Apr04T.png
April 4, 2201
SE2219Apr15T.png
April 15, 2219
35 36 37
SE2237Apr25T.png
April 25, 2237
SE2255May07T.png
May 7, 2255
SE2273May17T.png
May 17, 2273
38 39 40
SE2291May28T.png
May 28, 2291
SE2309Jun09T.png
June 9, 2309
SE2327Jun20T.png
June 20, 2327
41
SE2345Jun30T.png
June 30, 2345

Notes[]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ http://eclipse.gsfc.nasa.gov/SEsaros/SEsaros142.html

References[]

Retrieved from ""