Solar eclipse of October 12, 1939

From Wikipedia, the free encyclopedia
Solar eclipse of October 12, 1939
SE1939Oct12T.png
Map
Type of eclipse
NatureTotal
Gamma-0.9737
Magnitude1.0266
Maximum eclipse
Duration92 sec (1 m 32 s)
Coordinates72°48′S 155°06′E / 72.8°S 155.1°E / -72.8; 155.1
Max. width of band418 km (260 mi)
Times (UTC)
Greatest eclipse20:40:23
References
Saros123 (49 of 70)
Catalog # (SE5000)9374

A total solar eclipse occurred on October 12, 1939. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Related eclipses[]

Solar eclipses 1939–1942[]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 1939–1942
Descending node   Ascending node
Saros Map Saros Map
118 April 19, 1939
SE1939Apr19A.png
Annular
123 October 12, 1939
SE1939Oct12T.png
Total
128 April 7, 1940
SE1940Apr07A.png
Annular
133 October 1, 1940
SE1940Oct01T.png
Total
138 March 27, 1941
SE1941Mar27A.png
Annular
143 September 21, 1941
SE1941Sep21T.png
Total
148 March 16, 1942
SE1942Mar16P.png
Partial
153 September 10, 1942
SE1942Sep10P.png
Partial
The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.

Metonic series[]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25 October 12–13 July 31-Aug 1 May 18–20 March 7–8
91 93 95 97 99
December 23, 1878 October 12, 1882 July 31, 1886 May 18, 1890 March 7, 1894
101 103 105 107 109
December 23, 1897 October 12, 1901 August 1, 1905 May 19, 1909 March 8, 1913
111 113 115 117 119
SE1916Dec24P.png
December 24, 1916
October 12, 1920 SE1924Jul31P.png
July 31, 1924
SE1928May19T.png
May 19, 1928
SE1932Mar07A.png
March 7, 1932
121 123 125 127 129
SE1935Dec25A.png
December 25, 1935
SE1939Oct12T.png
October 12, 1939
SE1943Aug01A.png
August 1, 1943
SE1947May20T.png
May 20, 1947
SE1951Mar07A.png
March 7, 1951
131 133 135 137 139
SE1954Dec25A.png
December 25, 1954
SE1958Oct12T.png
October 12, 1958
SE1962Jul31A.png
July 31, 1962
SE1966May20A.png
May 20, 1966
SE1970Mar07T.png
March 7, 1970
141 143 145 147 149
SE1973Dec24A.png
December 24, 1973
SE1977Oct12T.png
October 12, 1977
SE1981Jul31T.png
July 31, 1981
SE1985May19P.png
May 19, 1985
SE1989Mar07P.png
March 7, 1989
151 153 155 157 159
SE1992Dec24P.png
December 24, 1992
SE1996Oct12P.png
October 12, 1996
SE2000Jul31P.png
July 31, 2000
May 19, 2004 March 7, 2008
161 163 165 167 169
December 24, 2011 October 13, 2015 August 1, 2019 May 19, 2023 March 8, 2027

Notes[]

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References[]

Retrieved from ""