Ultrabarrelled space

From Wikipedia, the free encyclopedia

In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.

Definition[]

A subset of a TVS is called an ultrabarrel if it is a closed and balanced subset of and if there exists a sequence of closed balanced and absorbing subsets of such that for all In this case, is called a defining sequence for A TVS is called ultrabarrelled if every ultrabarrel in is a neighbourhood of the origin.[1]

Properties[]

A locally convex ultrabarrelled space is a barrelled space.[1] Every ultrabarrelled space is a quasi-ultrabarrelled space.[1]

Examples and sufficient conditions[]

Complete and metrizable TVSs are ultrabarrelled.[1] If is a complete locally bounded non-locally convex TVS and if is a closed balanced and bounded neighborhood of the origin, then is an ultrabarrel that is not convex and has a defining sequence consisting of non-convex sets.[1]

Counter-examples[]

There exist barrelled spaces that are not ultrabarrelled.[1] There exist TVSs that are complete and metrizable (and thus ultrabarrelled) but not barrelled.[1]

See also[]

  • Barrelled space – A topological vector space with near minimum requirements for the Banach–Steinhaus theorem to hold.
  • Countably barrelled space
  • Countably quasi-barrelled space
  • Infrabarreled space
  • Uniform boundedness principle#Generalisations – A theorem stating that pointwise boundedness implies uniform boundedness

Citations[]

  1. ^ Jump up to: a b c d e f g Khaleelulla 1982, pp. 65–76.

Bibliography[]

  • Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). doi:10.5802/aif.16. MR 0042609.
  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • ; (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Robertson, Alex P.; Robertson, Wendy J. (1964). Topological vector spaces. Cambridge Tracts in Mathematics. 53. Cambridge University Press. pp. 65–75.
  • Schaefer, Helmut H.; (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
Retrieved from ""