Cantic 8-cube

From Wikipedia, the free encyclopedia
Cantic 8-cube
Truncated 8-demicube D8.svg
D8 Coxeter plane projection
Type uniform 8-polytope
Schläfli symbol t0,1{3,35,1}
h2{4,3,3,3,3,3,3}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure ( )v{ }x{3,3,3,3}
Coxeter groups D8, [35,1,1]
Properties convex

In eight-dimensional geometry, a cantic 8-cube or truncated 8-demicube is a uniform 8-polytope, being a truncation of the 8-demicube.

Alternate names[]

  • Truncated demiocteract
  • Truncated hemiocteract (Jonathan Bowers)

Cartesian coordinates[]

The Cartesian coordinates for the vertices of a truncated 8-demicube centered at the origin and edge length 6√2 are coordinate permutations:

(±1,±1,±3,±3,±3,±3,±3,±3)

with an odd number of plus signs.

Images[]

orthographic projections
Coxeter plane B8 D8 D7 D6 D5
Graph 8-demicube t01 B8.svg 8-demicube t01 D8.svg 8-demicube t01 D7.svg 8-demicube t01 D6.svg 8-demicube t01 D5.svg
Dihedral symmetry [16/2] [14] [12] [10] [8]
Coxeter plane D4 D3 A7 A5 A3
Graph 8-demicube t01 D4.svg 8-demicube t01 D3.svg 8-demicube t01 A7.svg 8-demicube t01 A5.svg 8-demicube t01 A3.svg
Dihedral symmetry [6] [4] [8] [6] [4]

Notes[]

References[]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "8D uniform polytopes (polyzetta) x3x3o *b3o3o3o3o3o".

External links[]

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Retrieved from ""