Cantic 7-cube

From Wikipedia, the free encyclopedia
Truncated 7-demicube
Cantic 7-cube
Truncated 7-demicube D7.svg
D7 Coxeter plane projection
Type uniform 7-polytope
Schläfli symbol t{3,34,1}
h2{4,3,3,3,3,3}
Coxeter diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-faces 142
5-faces 1428
4-faces 5656
Cells 11760
Faces 13440
Edges 7392
Vertices 1344
Vertex figure ( )v{ }x{3,3,3}
Coxeter groups D7, [34,1,1]
Properties convex

In seven-dimensional geometry, a cantic 7-cube or truncated 7-demicube as a uniform 7-polytope, being a truncation of the 7-demicube.

A uniform 7-polytope is vertex-transitive and constructed from uniform 6-polytope facets, and can be represented a coxeter diagram with ringed nodes representing active mirrors. A demihypercube is an alternation of a hypercube.

Its 3-dimensional analogue would be a truncated tetrahedron (truncated 3-demicube), and Coxeter diagram CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png as a cantic cube.

Alternate names[]

  • Truncated demihepteract
  • Truncated hemihepteract (thesa) (Jonathan Bowers)[1]

Cartesian coordinates[]

The Cartesian coordinates for the 1344 vertices of a truncated 7-demicube centered at the origin and edge length 62 are coordinate permutations:

(±1,±1,±3,±3,±3,±3,±3)

with an odd number of plus signs.

Images[]

It can be visualized as a 2-dimensional orthogonal projections, for example the a D7 Coxeter plane, containing 12-gonal symmetry. Most visualizations in symmetric projections will contain overlapping vertices, so the colors of the vertices are changed based on how many vertices are at each projective position, here shown with red color for no overlaps.

orthographic projections
Coxeter
plane
B7 D7 D6
Graph 7-demicube t01 B7.svg 7-demicube t01 D7.svg 7-demicube t01 D6.svg
Dihedral
symmetry
[14/2] [12] [10]
Coxeter plane D5 D4 D3
Graph 7-demicube t01 D5.svg 7-demicube t01 D4.svg 7-demicube t01 D3.svg
Dihedral
symmetry
[8] [6] [4]
Coxeter
plane
A5 A3
Graph 7-demicube t01 A5.svg 7-demicube t01 A3.svg
Dihedral
symmetry
[6] [4]

Related polytopes[]

Dimensional family of cantic n-cubes
n 3 4 5 6 7 8
Symmetry
[1+,4,3n-2]
[1+,4,3]
= [3,3]
[1+,4,32]
= [3,31,1]
[1+,4,33]
= [3,32,1]
[1+,4,34]
= [3,33,1]
[1+,4,35]
= [3,34,1]
[1+,4,36]
= [3,35,1]
Cantic
figure
Cantic cube.png Schlegel half-solid truncated 16-cell.png Truncated 5-demicube D5.svg Truncated 6-demicube D6.svg Truncated 7-demicube D7.svg Truncated 8-demicube D8.svg
Coxeter CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
= CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
= CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
= CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
= CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Schläfli h2{4,3} h2{4,32} h2{4,33} h2{4,34} h2{4,35} h2{4,36}

There are 95 uniform polytopes with D6 symmetry, 63 are shared by the B6 symmetry, and 32 are unique:

D7 polytopes
7-demicube t0 D7.svg
t0(141)
7-demicube t01 D7.svg
t0,1(141)
7-demicube t02 D7.svg
t0,2(141)
7-demicube t03 D7.svg
t0,3(141)
7-demicube t04 D7.svg
t0,4(141)
7-demicube t05 D7.svg
t0,5(141)
7-demicube t012 D7.svg
t0,1,2(141)
7-demicube t013 D7.svg
t0,1,3(141)
7-demicube t014 D7.svg
t0,1,4(141)
7-demicube t015 D7.svg
t0,1,5(141)
7-demicube t023 D7.svg
t0,2,3(141)
7-demicube t024 D7.svg
t0,2,4(141)
7-demicube t025 D7.svg
t0,2,5(141)
7-demicube t034 D7.svg
t0,3,4(141)
7-demicube t035 D7.svg
t0,3,5(141)
7-demicube t045 D7.svg
t0,4,5(141)
7-demicube t0123 D7.svg
t0,1,2,3(141)
7-demicube t0124 D7.svg
t0,1,2,4(141)
7-demicube t0125 D7.svg
t0,1,2,5(141)
7-demicube t0134 D7.svg
t0,1,3,4(141)
7-demicube t0135 D7.svg
t0,1,3,5(141)
7-demicube t0145 D7.svg
t0,1,4,5(141)
7-demicube t0234 D7.svg
t0,2,3,4(141)
7-demicube t0235 D7.svg
t0,2,3,5(141)
7-demicube t0245 D7.svg
t0,2,4,5(141)
7-demicube t0345 D7.svg
t0,3,4,5(141)
7-demicube t01234 D7.svg
t0,1,2,3,4(141)
7-demicube t01235 D7.svg
t0,1,2,3,5(141)
7-demicube t01245 D7.svg
t0,1,2,4,5(141)
7-demicube t01345 D7.svg
t0,1,3,4,5(141)
7-demicube t02345 D7.svg
t0,2,3,4,5(141)
7-demicube t012345 D7.svg
t0,1,2,3,4,5(141)

Notes[]

  1. ^ Klitzing, (x3x3o *b3o3o3o3o - thesa)

References[]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "7D uniform polytopes (polyexa) x3x3o *b3o3o3o3o – thesa".

External links[]

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Retrieved from ""