2021 in paleobotany

From Wikipedia, the free encyclopedia
List of years in paleobotany
In paleontology
2018
2019
2020
2021
2022

This article records new taxa of fossil plants that are scheduled to be described during the year 2020, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2020.

Ferns and fern allies[]

Name Novelty Status Authors Age Type locality Location Notes Images

Arthropitys buritiranensis[1]

Sp. nov

In press

Neregato et al.

Permian

 Brazil

A member of Calamitales.

[2]

Sp. nov

In press

De Benedetti et al.

Late Cretaceous (Maastrichtian)

La Colonia Formation

 Argentina

A species of Azolla.

[3]

Sp. nov

In press

Wang et al.

Early Permian

 China

A marattialean tree fern belonging to the family .

Caulopteris neimengensis[3]

Sp. nov

In press

Wang et al.

Early Permian

Taiyuan Formation

 China

A marattialean tree fern belonging to the family Psaroniaceae.

Caulopteris obovatus[3]

Sp. nov

In press

Wang et al.

Early Permian

Taiyuan Formation

 China

A marattialean tree fern belonging to the family Psaroniaceae.

[4]

Gen. et sp. nov

Valid

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A fern belonging to the family Dennstaedtiaceae. Genus includes new species C. burmanica.

[5]

Sp. nov

In press

Tian, Wang & Jiang

Late Jurassic

Tiaojishan Formation

 China

A fern, a species of Claytosmunda.

[6]

Sp. nov

Valid

Pigg et al.

Early Eocene

Klondike Mountain Formation

 United States
( Washington)

A fern, a species of Dennstaedtia.

[7]

Sp. nov

Valid

Sun et al.

Early Permian

 China

A fern belonging to the group Marattiales.

[6]

Sp. nov

Valid

Pigg et al.

Early Eocene

Klondike Mountain Formation

 United States
( Washington)

A fern, a species of Hymenophyllum.

[8]

Gen. et sp. nov

In press

Correia, Šimůnek & Sá

Carboniferous (Gzhelian)

Douro Basin

 Portugal

A member of Equisetales. Genus includes new species I. wegeneri.

[9]

Sp. nov

In press

Wang et al.

Cretaceous

Burmese amber

 Myanmar

A member of the family Marsileaceae.

[10]

Sp. nov

In press

Pšenička et al.

Permian (Asselian)

Taiyuan Formation

 China

A zygopterid fern.

Neocalamites iranensis[11]

Sp. nov

Valid

Kustatscher, Mazaheri-Johari & Roghi in Mazaheri-Johari et al.

Late Triassic (Carnian)

 Iran

A member of the family Equisetaceae.

[12]

Sp. nov

In press

Pšenička, Sakala & Dašková

Early Miocene

Most Basin

 Czech Republic

A species of Odontosoria.

[13]

Gen. et sp. nov

In press

Votočková Frojdová et al.

Early Permian

 China

A leptosporangiate fern. Genus includes new species O. zhongxiangii.

[14]

Sp. nov

Wang & Sun in Wang et al.

Miocene

Fotan Group

 China

A fern, a species of Osmunda.

[15]

Gen. et sp. nov

Valid

Gnaedinger & Zavattieri

Late Triassic (NorianRhaetian)

Paso Flores Formation

 Argentina

A member of the family Dipteridaceae. Genus includes new species P. artabeae.

[16]

Sp. nov

In press

Zhou et al.

Permian (Lopingian)

 China

A fern belonging to the group Marattiales.

[17]

Sp. nov

In press

Guo et al.

Permian (Lopingian)

 China

A fern belonging to the group Marattiales.

[18]

Sp. nov

In press

He et al.

Late Permian

 China

A fern belonging to the group Marattiales.

Sphenophyllum fanwanense[19]

Sp. nov

In press

Huang et al.

Late Devonian

 China

A sphenophyllalean equisetid

Sphenophyllum parvifolium[20]

Sp. nov

In press

Libertín et al.

Early Permian

Taiyuan Formation

 China

A sphenophyllalean equisetid

[21]

Gen. et sp. nov

In press

Machado et al.

Eocene

Huitrera Formation

 Argentina

Fertile remains of a fern comparable with Thelypteridaceae and Dryopteridaceae. Genus includes new species T. helgae.

[22]

Sp. nov

In press

Zhang et al.

Cretaceous

Burmese amber

 Myanmar

A tree fern, a species of Thyrsopteris.

[23]

Sp. nov

In press

Naugolnykh & Song in Song et al.

Middle Eocene

Changchang Formation

 China

A fern, a species of Woodwardia.

Bennettitales[]

Name Novelty Status Authors Age Type locality Location Notes Images

Nilssoniopteris jogiana[24]

Sp. nov

Blomenkemper & Abu Hamad in Blomenkemper et al.

Permian (Changhsingian)

Umm Irna Formation

 Jordan

A member of Bennettitales.

[24]

Sp. nov

Bäumer, Backer & Wang in Blomenkemper et al.

Permian (Cisuralian)

Upper Shihhotse Formation

 China

A member of Bennettitales.

Pterophyllum pottii[24]

Sp. nov

Bomfleur & Kerp in Blomenkemper et al.

Permian (Changhsingian)

Umm Irna Formation

 Jordan

A member of Bennettitales.

[25]

Sp. nov

Valid

Guzmán-Madrid & Velasco de León

Middle Jurassic (Bajocian)

Zorrillo Formation

 Mexico

[26]

Sp. nov

In press

Lozano-Carmona et al.

Middle Jurassic (Callovian)

Tecomazuchil Formation

 Mexico

A member of Bennettitales.

Williamsonia sanjuanensis[27]

Sp. nov

In press

Lozano-Carmona & Velasco-de León

Middle Jurassic

 Mexico

Cycadales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[28]

Sp. nov

In press

Van Konijnenburg-van Cittert et al.

Late Triassic (Rhaetian)

Exter Formation

 Germany

A member of Cycadales of uncertain phylogenetic placement.

[29]

Gen. et sp. nov

In press

Spiekermann et al.

Permian (Kungurian)

Irati Formation

 Brazil

A cycad-like plant. Genus includes new species I. australis.

Ginkgoales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[30]

Sp. nov

In press

Tang et al.

Middle Jurassic

Xishanyao Formation

 China

Ginkgoites villardeseoanii[31]

Sp. nov

In press

Andruchow-Colombo et al.

Late Cretaceous (Maastrichtian)

Lefipán Formation

 Argentina

[32]

Sp. nov

In press

Afonin & Gromyko

Early Cretaceous

 Russia
( Arkhangelsk Oblast)

A member of Ginkgoales described on the basis of fossil wood.

Karkenia irkutensis[33]

Sp. nov

In press

Nosova, Crane & Shi

Middle Jurassic (Aalenian)

Prisayan Formation

 Russia

Vladimariales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[34]

Sp. nov

Valid

Nosova, Kostina & Bugdaeva

Late JurassicEarly Cretaceous (OxfordianBerriasian)


 Russia
( Khabarovsk Krai)

[35]

Sp. nov

In press

Nosova

Middle Jurassic (AalenianBajocian)

 Russia

A foliage species

[35]

Sp. nov

In press

Nosova

Middle Jurassic (Aalenian–Bajocian)

Prisayan Formation

 Russia

A reproducive structure species

Conifers[]

Name Novelty Status Authors Age Type locality Location Notes Images

Agathoxylon mendezii[36]

Sp. nov

Valid

Del Fueyo et al.

Early Cretaceous (BerriasianValanginian)

 Argentina

Fossil wood of a seed plant of uncertain phylogenetic placement, most likely related to Araucariaceae.

Agathoxylon santanensis[37]

Sp. nov

In press

Dos Santos et al.

Early Cretaceous (Aptian)

Crato Formation

 Brazil

[38]

Sp. nov

In press

Batista et al.

Early Cretaceous

 Brazil

A species of Araucaria.

[39]

Sp. nov

In press

Yang & Li

Early Cretaceous (BerriasianBarremian)

 China

Brachyoxylon patagonicum[40]

Sp. nov

In press

Rombola et al.

Late Cretaceous

Cerro Fortaleza Formation

 Argentina

Fossil wood of a member of the family Cheirolepidiaceae.

[41]

Sp. nov

Valid

De Wit & Bamford

Late Cretaceous

 South Africa

Fossil wood of a member or a relative of the family Cupressaceae.

[42]

Sp. nov

Valid

Wu & Jin in Wu et al.

Miocene

 China

A species of Fokienia.

[43]

Gen. et sp. nov

Valid

Herrera et al.

Early Cretaceous (AptianAlbian)

 Mongolia

A member of the family Pinaceae. Genus includes new species L. mellonae.

[44]

Sp. nov

In press

Wan et al.

Late Triassic (CarnianNorian)

 China

A coniferous trunk.

[45]

Gen. et sp. nov

Valid

Atkinson et al.

Late Cretaceous

 Japan

A member of the family Cupressaceae belonging to the subfamily Cunninghamioideae. Genus includes new species N. japonicum.

[46]

Sp. nov

In press

Ding et al.

Late Miocene

 China

A species of Nothotsuga

[45]

Gen. et sp. nov

Valid

Atkinson et al.

Late Cretaceous

 Japan

A member of the family Cupressaceae belonging to the subfamily Cunninghamioideae. Genus includes new species O. hokkaidoensis.

[47]

Sp. nov

Valid

Dolezych, LePage & Williams

Oligocene (Chattian)

Korlikov Formation

 Russia
( Tomsk Oblast)

[48]

Sp. nov

Valid

Zhang et al.

Early Oligocene

 China

A pine.

[49]

Sp. nov

In press

Grote in Grote & Srisuk

Oligocene-early Miocene

 Thailand

A pine.

[50]

Sp. nov

In press

Li et al.

Early Miocene

 China

A pine.

[51]

Sp. nov

In press

Wu et al.

Early Pliocene

 China

A species of Podocarpus.

[52]

Sp. nov

In press

Nhamutole, Bamford & Araújo

Permian (late Capitanian)

K5 Formation

 Mozambique

A member of the family Cupressaceae.

Protaxodioxylon verniersii[52]

Sp. nov

In press

Nhamutole & Bamford in Nhamutole, Bamford & Araújo

Permian (late Capitanian)

K5 Formation

 Mozambique

A member of the family Cupressaceae.

[53]

Sp. nov

In press

Gou & Feng in Gou et al.

Middle Jurassic

 China

A conifer of uncertain phylogenetic placement, possibly belonging or related to the family Podocarpaceae.

[54]

Sp. nov

Valid

Matsunaga et al.

Early Cretaceous

Huolinhe Formation
Tevshiin Govi Formation

 China
 Mongolia

A member or a close relative of the family Pinaceae.

[47]

Gen. et sp. nov

Valid

Dolezych, LePage & Williams

Oligocene (Chattian)

Korlikov Formation

 Russia
( Tomsk Oblast)

Genus includes new species T. schneiderianum.

[55]

Sp. nov

Valid

Forte, Kustatscher & Van Konijnenburg-van Cittert

Middle Triassic (Anisian)

 Italy

A member of Voltziales.

[56]

Sp. nov

In press

Kvaček & Mendes

Early Cretaceous (AptianAlbian)

Almargem Formation

 Portugal

A member of the family Cheirolepidiaceae.

[57]

Sp. nov

In press

Xie & Gee in Xie et al.

Late Jurassic

Morrison Formation

 United States
( Utah)

Fossil wood of a conifer.

[58]

Gen. et sp. nov

In press

Wan et al.

Permian (Changhsingian)

 China

A silicified trunk with coniferous affinities. Genus includes new species Z. liaoi.

Flowering plants[]

Alismatales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[59]

Gen. et sp. nov

Valid

Stockey, Hoffman & Rothwell

Paleocene

 Canada
( Alberta)

A member of the family Araceae. Genus includes new species B. speirsiae.

Apiales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[60]

Nom. nov

Valid

Doweld

Miocene

 New Zealand

A species of Pittosporum; a replacement name for Pittosporum elegans (Ettingshausen) W.R.B. Oliver (1950).

[60]

Gen. et comb. nov

Valid

Doweld

Eocene

 Russia
( Kamchatka Krai)

A new genus for "Pittosporum" beringianum Chelebaeva & Akhmetiev (1983).

Arecales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[61]

Nom. nov

Valid

Doweld

Eocene

Messel pit

 Germany

A member of the family Arecaceae; a replacement name for Friedemannia Collinson, Manchester & Wilde (2012).

[62]

Sp. nov

In press

Song, Su, Do & Zhou in Song et al.

Oligocene

Dong Ho Formation

 Vietnam

A member of the family Arecaceae belonging to the subfamily Coryphoideae.

Canellales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[63]

Sp. nov

Valid

Brea et al.

Early Eocene

Huitrera Formation

 Argentina

A member of the family Winteraceae.

Chloranthales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[64]

Gen. et sp. nov

Valid

Sender et al.

Early Cretaceous (Albian)

Escucha Formation

 Spain

A member of the family Chloranthaceae. Genus includes new species A. eklundiae.

[64]

Gen. et sp. nov

Valid

Sender et al.

Early Cretaceous (Albian)

Escucha Formation

 Spain

A member of the family Chloranthaceae. Genus includes new species T. elongatum.

Cornales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[65]

Sp. nov

In press

Xie et al.

Late Miocene

 China

A species of Camptotheca.

[66]

Sp. nov

In press

Xu & Jin in Xu et al.

Late Oligocene

 China

A tupelo.

[61]

Nom. nov

Valid

Doweld

Paleocene

 United States
( Montana)

A member of the family Nyssaceae; a replacement name for Browniea Manchester & Hickey (2007).

Ericales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[67]

Sp. nov

Valid

Denk & Bouchal

Miocene

 Denmark

A species of Diospyros.

[68]

Sp. nov

Valid

Kvaček

Early Miocene

Most Basin

 Czech Republic

A species of Halesia.

[69]

Gen. et sp. nov

Valid

Hably & Erdei

Miocene (Burdigalian)

 Hungary

Possibly a member of the family Theaceae. Genus includes new species M. gordonioides.

[70]

Gen. et 2 sp. nov

Valid

Friis, Crane

Late Cretaceous (Campanian-Maastrichtian)

 Portugal

A member of the family Primulaceae. Genus includes new species M. elegans and M. kvacekii.

[71]

Sp. nov

Valid

Striegler

Miocene (Tortonian)

Rauno Formation

 Germany

A member of the family Theaceae.

Fabales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[72]

Sp. nov

In press

Hazra, Hazra & Khan in Hazra et al.

Pliocene

 India

A species of Albizia.

[72]

Sp. nov

In press

Hazra, Hazra & Khan in Hazra et al.

Pliocene

Rajdanda Formation

 India

A species of Albizia.

[73]

Sp. nov

In press

Wang et al.

Miocene

Fotan Group

 China

A species of Cercis.

[74]

Sp. nov

In press

Jia et al.

Paleogene

 China

A species of Cladrastis.

[75]

Gen. et sp. nov

In press

Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas

Eocene

El Bosque Formation

 Mexico

Fossil wood of a member of the family Fabaceae. Genus includes new species E. triserial.

[76]

Sp. nov

In press

Baez

Miocene

Tambería Formation

 Argentina

A member of Leguminosae.

[75]

Sp. nov

In press

Pérez-Lara, Estrada-Ruiz & Castañeda-Posadas

Eocene

El Bosque Formation

 Mexico

Fossil wood of a member of the family Fabaceae.

[77]

Sp. nov

Valid

Li & Manchester in Li et al.

Early Eocene

Tepee Trail Formation

 United States
( Wyoming)

A member of the family Fabaceae.

Leguminocarpum olmensis[78]

Sp. nov

Valid

Centeno-González et al.

Late Cretaceous (Campanian)

Olmos Formation

 Mexico

A member of the family Fabaceae.

[79]

Gen. et sp. nov

Valid

Hazra, Hazra & Khan in Hazra et al.

Pliocene

 India

A member of the family Fabaceae. Genus includes new species N. indica.

[80]

Sp. nov

In press

Li et al.

Miocene

 China

A species of Ormosia.

[81]

Sp. nov

In press

Hazra, Hazra & Khan in Hazra et al.

Pliocene

Rajdanda Formation

 India

A species of Peltophorum.

[82]

Gen. et sp. nov

Valid

Poinar & Chambers

Burdigalian

Dominican amber

 Dominican Republic

A member of the family Fabaceae belonging to the tribe Detarieae. Genus includes new species S. hispaniolanum.

Fagales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[83]

Sp. nov

Valid

Akkemik

Middle Miocene

Kesmekaya Volcanics

 Turkey

A member of the family Betulaceae.

[84]

Gen. et sp. nov

Valid

Wilde, Frankenhäuser & Lenz

Eocene

Eckfelder Maar

 Germany

A catkin-like male inflorescence, probably of myricaceous affinity. Genus includes new species M. eckfeldensis.

[83]

Sp. nov

Valid

Akkemik

Middle Miocene

Kesmekaya Volcanics

 Turkey

A member of the family Betulaceae.

[85]

Sp. nov

Valid

Hazra, Hazra & Khan in Hazra et al.

Pliocene

 India

A member of the family Juglandaceae.

[61]

Nom. nov

Valid

Doweld

Paleocene

 United Kingdom

A member of the family Betulaceae; a replacement name for Cantia Stopes (1915).

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Fagaceae.

Gentianales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[86]

Sp. nov

Valid

Shukla et al.

Early Eocene

Cambay Shale Formation

 India

A species of Adina.

[87]

Gen. et sp. nov

Valid

Singh et al.

Early Eocene

Cambay amber

 India

A member of the family Apocynaceae. Genus includes new species M. succinifera.

Lamiales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[88]

Sp. nov

Valid

Franco, Brea & Cerdeño

Miocene (Santacrucian)

Mariño Formation

 Argentina

A species of Dolichandra.

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Oleaceae.

[89]

Sp. nov

In press

Mathewes, Archibald & Lundgren

Early Eocene

Quilchena site

 Canada
( British Columbia)

A species of Fraxinus.

[90]

Nom. nov

Valid

Deshmukh

Late Cretaceous (Maastrichtian) - early Eocene

Deccan Intertrappean Beds

 India

A member of the family Acanthaceae; a replacement name for Acanthophyllum Ramteke & Kapgate (2014).

Laurales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[83]

Sp. nov

Valid

Akkemik

Middle Miocene

Kesmekaya Volcanics

 Turkey

A member of the family Lauraceae.

[91]

Nom. nov

Valid

Winterscheid in Winterscheid & Kvaček

Oligocene

 Germany

A species of Laurus; a replacement name for Laurus obovata Weber (1852).

[92]

Gen. et sp. nov

In press

Cevallos-Ferriz, Catharina & Kneller

Late Cretaceous (Campanian)

Rosario Formation

 Mexico

A member of the family Lauraceae. Genus includes new species R. bajacaliforniensis.

Liliales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[93]

Gen. et sp. nov

Valid

Poinar

Cretaceous

Burmese amber

 Myanmar

A member of the family Liliaceae. Genus includes new species M. burmitis.

Malpighiales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[94]

Sp. nov

In press

Reback et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A member of the family Euphorbiaceae.

[95]

Sp. nov

Valid

Hermsen

Pliocene

Gray Fossil Site

 United States
( Tennessee)

A species of Passiflora.

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Salicaceae.

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Salicaceae.

Malvales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[96]

Sp. nov

In press

Wang & Xie in Wang et al.

Late Miocene

 China

A species of Craigia

[97]

Sp. nov

Valid

Chen et al.

Miocene

 China

A species of Dipterocarpus

[98]

Sp. nov

In press

Huang, Morley & Hoorn in Huang et al.

Late Eocene

 Myanmar

Pollen probably derived from plants belonging to the genus Brownlowia.

[99]

Sp. nov

In press

Jia & Nam in Jia et al.

Middle Miocene

 South Korea

A species of Tilia

Myrtales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[100]

Sp. nov

In press

Vieira et al.

Pliocene (Piacenzian)

 Portugal

A species of Lythrum.

[101]

Sp. nov

In press

Li et al.

Miocene

 China

A species of Syzygium.

[102]

Sp. nov

Valid

Bamford & Pickford

Probably late Eocene

 Mozambique

A member of the family Combretaceae.

[103]

Sp. nov

In press

Aung et al.

Late Pliocene

 China

A water caltrop.

[104]

Gen. et sp. nov

Valid

Carvalho et al.

Paleocene

Bogotá Formation

 Colombia

A member of the family Melastomataceae. Genus includes new species X. simonae.

Nymphaeales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[61]

Nom. nov

Valid

Doweld

Eocene

 Egypt

A replacement name for Thiebaudia Chandler (1954).

Oxalidales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[105]

Sp. nov

Valid

Poinar, Chambers & Vega

Cretaceous

Burmese amber

 Myanmar

A possible member of Cunoniaceae.

Piperales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[106]

Nom. nov

Valid

Freitas & Doweld

Oligocene

 United States
( California)

A species of Aristolochia; a replacement name for Aristolochia triangularis MacGinitie (1937).

Poales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[107]

Gen. et sp. nov

Valid

Poinar & Soreng

Eocene

Baltic amber

 Russia
( Kaliningrad Oblast)

Grass belonging to the subfamily Arundinoideae. Genus includes new species E. balticus.

Rosales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[61]

Nom. nov

Valid

Doweld

Eocene

Clarno Formation

 United States
( Oregon)

A flowering plant with possible affinities with urticalean rosids; a replacement name for Scottoxylon Wheeler & Manchester (2002).

[47]

Sp. nov

Valid

Dolezych, LePage & Williams

Oligocene (Chattian)

Korlikov Formation

 Russia
( Tomsk Oblast)

[108]

Sp. nov

In press

Patel, Rana & Khan in Patel et al.

Early Eocene

 India

A species of Morus.

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Rosaceae.

[71]

Sp. nov

Valid

Striegler

Miocene (Tortonian)

Rauno Formation

 Germany

A species of Pyracantha.

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Ulmaceae.

[109]

Sp. nov

Valid

Del Rio et al.

Middle Eocene

 China

A species of Ventilago.

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Ulmaceae.

Santalales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[98]

Sp. nov

In press

Morley, Huang & Hoorn in Huang et al.

Middle and late Eocene

Yaw Formation

 India
 Indonesia
 Myanmar

Pollen probably derived from plants belonging to the genus Ptychopetalum.

Sapindales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Sapindaceae.

[110]

Gen. et sp. nov

Valid

Jud et al.

Early Miocene

Cucaracha Formation

 Panama

A member of the family Sapindaceae belonging to the subfamily Sapindoideae and the tribe . Genus includes new species A. heteroxylon.

[111]

Sp. nov

Valid

Rodríguez-Reyes, Estrada-Ruiz & Terrazas in Rodríguez-Reyes et al.

Oligocene-Miocene

 Panama

A species of Anacardium.

[112]

Sp. nov

Valid

Soomro et al.

Miocene

 Pakistan

Fossil wood of a member of the family Rutaceae.

[113]

Sp. nov

Valid

Liu, Xu & Jin in Liu et al.

Late Oligocene

 China

A species of Melia.

[102]

Gen. et sp. nov

Valid

Bamford & Pickford

Probably late Eocene

Mazamba Formation

 Mozambique

A member of the family Anacardiaceae. Genus includes new species S. gorongosense.

[114]

Sp. nov

Valid

Huang et al.

Late Oligocene

 China

A species of Tetradium.

Saxifragales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[115]

Sp. nov

In press

Huang et al.

Miocene

 China

A species of Liquidambar.

[83]

Sp. nov

Valid

Akkemik

Early Miocene

Hançili Formation

 Turkey

A member of the family Altingiaceae.

[116]

Gen. et sp. nov

Valid

Kajita & Nishida in Kajita, Suzuki & Nishida

Late Cretaceous (ConiacianSantonian)

 Japan

A member of Saxifragales of uncertain phylogenetic placement. Genus includes new species O. kokubunii.

[117]

Gen. nov

Valid

Lai et al.

Late Cretaceous (Turonian)

 United States
( New Jersey)

A member of Altingiaceae. Genus includes P. ovum‐dinosauri and P. polyodonta.

Zingiberales[]

Name Novelty Status Authors Age Type locality Location Notes Images

[118]

Gen. et sp. nov

Valid

Smith et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A member of the family Zingiberaceae. Genus includes new species O. patanense.

Other angiosperms[]

Name Novelty Status Authors Age Type locality Location Notes Images

[119]

Sp. nov

Valid

Golovneva & Volynets in Golovneva et al.

Early Cretaceous (Albian)

Galenki Formation

 Russia
( Primorsky Krai)

A flowering plant of uncertain phylogenetic placement.

[120]

Gen. et sp. nov

Valid

Pessoa, Ribeiro & Jud

Early Cretaceous (Aptian)

Crato Formation

 Brazil

A herbaceous eudicot similar to some members of Ranunculales. Genus includes new species B. pinnatissecta.

[121]

Sp. nov

Valid

Sonkusare, Samant & Mohabey

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

Pollen of a flowering plant of uncertain affinity.

[122]

Gen. et sp. nov

In press

Cui et al.

Middle-Late Jurassic

Jiulongshan Formation

 China

A possible flower bud. Genus includes new species F. jurassica.

[123]

Gen. et sp. nov

In press

Du in Du et al.

Early Cretaceous (late Aptian-early Albian)

 China

A eudicot of uncertain phylogenetic placement. Genus includes new species G. saligna.

[124]

Nom. nov

Valid

Hernández

Late Cretaceous (Maastrichtian)

 Nigeria

Pollen of a flowering plant; a replacement name for Clavatricolpites Hoeken-Klinkenberg (1964).

Other plants[]

Name Novelty Status Authors Age Type locality Location Notes Images

[125]

Gen. et sp. nov

Valid

Durieux et al.

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

A member of Cladoxylopsida. Genus includes new species A. praecox.

Baragwanathia brevifolioides[126]

Nom. nov

Valid

Kraft & Kvaček

Silurian (Přídolí)

Požáry Formation

 Czech Republic

A member of the family Drepanophycaceae; a replacement name for Baragwanathia brevifolia Kraft & Kvaček (2017).

[127]

Sp. nov

Valid

Ivanov & Belkinova

Miocene (Serravallian)

 Bulgaria

A green alga, a species of Closterium.

[128]

Sp. nov

In press

Harris et al.

Devonian (Famennian)

 South Africa

A member of Lycopsida.

Colpodexylon pullumpedes[128]

Sp. nov

In press

Harris et al.

Devonian (Famennian)

Witpoort Formation

 South Africa

A member of Lycopsida.

[129]

Sp. nov

Valid

Šimůnek & Lojka

Carboniferous (Pennsylvanian)

Kladno Formation

 Czech Republic

Cordaitalean cuticles.

Cordaabaxicutis papillosus[129]

Sp. nov

Valid

Šimůnek & Lojka

Carboniferous (Pennsylvanian)

Kladno Formation

 Czech Republic

Cordaitalean cuticles.

[129]

Sp. nov

Valid

Šimůnek & Lojka

Carboniferous (Pennsylvanian)

Kladno Formation

 Czech Republic

Cordaitalean cuticles.

[130]

Sp. nov

Valid

Bippus, Rothwell & Stockey

Late Cretaceous

 United States
( Alaska)

A moss belonging to the family Rhabdoweisiaceae, a species of Cynodontium.

[131]

Gen. et sp. nov

Valid

Manchester et al.

Late Jurassic

Morrison Formation

 United States
( Utah)

A seed-bearing structure of gnetalean affinity. Genus includes new species D. tetragona.

[132]

Gen. et comb. nov

Valid

Barattolo, Romano & Conrad

Late Triassic and possibly Early Jurassic

 Austria
 Czech Republic
 Germany
 Greece
 Italy
 Oman
 Slovakia

A green alga belonging to the group Dasycladales and the family . Genus includes "" micropora Di Stefano & Senowbari-Daryan (1985), "Heteroporella" macropora Di Stefano, 1981 ex Di Stefano & Senowbari-Daryan (1985), "" zanklii Ott (1967), "Chinianella" crosii Ott (1968) and "Heteroporella" carpatica Bystrický (1967).

[133]

Gen. et sp. et comb. nov

Valid

Barattolo, Bucur & Marian

Early Cretaceous

 Italy
 Romania
 Spain

A green alga belonging to the group Dasycladales. Genus includes new species D. transylvanica, as well as "Zittelina" hispanica Masse, Arias & Vilas (1993), "Zittelina" massei Bucur, Granier & Săsăran (2010) and "Triploporella" matesina Barattolo (1980).

[134]

Gen. et sp. nov

Valid

Gess & Prestianni

Devonian (Lochkovian?)

 South Africa

An early polysporangiophyte. Genus includes new species E. itshoba.

[135]

Gen. et sp. nov

In press

Gess & Prestianni

Devonian (Famennian)

 South Africa

A fern-like plant of uncertain affinities. Genus includes new species F. lococannensis.

[136]

Sp. nov

Valid

Li et al.

Cretaceous

Burmese amber

 Myanmar

A liverwort, a species of Frullania.

[137]

Sp. nov

In press

Bouju et al.

Miocene

Ethiopian amber

 Ethiopia

A liverwort, a species of Frullania.

[137]

Sp. nov

In press

Bouju et al.

Miocene

Ethiopian amber

 Ethiopia

A liverwort, a species of Frullania.

[138]

Sp. nov

In press

Liu et al.

Late Devonian

 China

A member of Protolepidodendrales.

[139]

Gen. et sp. nov

In press

Wang et al.

Late Devonian

 China

A seed plant of uncertain phylogenetic placement. Genus includes new species G. dongzhiensis.

[140]

Sp. nov

In press

Na & Sun in Na et al.

Middle Jurassic

 China

A member of Czekanowskiales.

[141]

Gen. et sp. nov

In press

Toledo et al.

Devonian (Emsian)

Battery Point Formation

 Canada

An early euphyllophyte belonging to the group . Genus includes new species K. bivena.

[134]

Gen. et sp. nov

Valid

Gess & Prestianni

Devonian (Lochkovian?)

Baviaanskloof Formation

 Brazil
 South Africa

An early polysporangiophyte. Genus includes new species K. parvapila.

[137]

Sp. nov

In press

Bouju et al.

Miocene

Ethiopian amber

 Ethiopia

A liverwort, a species of Lejeunea.

[142]

Gen. et sp. nov

Valid

Meyer-Berthaud, Decombeix & Blanchard

Devonian (Famennian)

 Australia

A lycopsid. Genus includes new species L. edieae.

[143]

Sp. nov

In press

Bai et al.

Devonian (probably Famennian)

 China

A member of Rhacophytales.

[144]

Sp. nov

In press

De Sosa Tomas et al.

Early Cretaceous

Los Adobes Formation

 Argentina

A member of Charophyta.

[145]

Sp. nov

In press

Sanjuan et al.

Early Cretaceous (Berriasian)

 Romania

A member of Charophyta.

[146]

Gen. et sp. nov

In press

Chernomorets & Sakala

Early Cretaceous (Albian)

Whisky Bay Formation

Antarctica

A homoxylous wood of uncertain systematic affinities. Genus includes new species M. australe.

[134]

Gen. et sp. nov

Valid

Gess & Prestianni

Devonian (Lochkovian?)

Baviaanskloof Formation

 South Africa

An early polysporangiophyte. Genus includes new species M. kougaensis.

[147]

Sp. nov

Valid

Ghosh et al.

Early Triassic

 India

A megaspore.

[148]

Gen. et sp. nov

Valid

Bonacorsi et al.

Devonian (Emsian)

Campbellton Formation

 Canada

A lycophyte. Genus includes new species O. dawsonii.

[149]

Sp. nov

Valid

Martín-Closas et al.

Early Cretaceous (BarremianAptian)

 Spain

A member of Charophyta belonging to the family Characeae.

[150]

Sp. nov

Valid

Wang et al.

Permian (Asselian)

 China

A progymnosperm belonging to the group Noeggerathiales and the family .

[151]

Sp. nov

Valid

Foraponova & Karasev

Permian

 Russia

A pteridosperm.

[152]

Sp. nov

In press

Feldberg et al.

Cretaceous

Burmese amber

 Myanmar

A liverwort, a species of Radula.

[153]

Gen. et sp. nov

In press

Oukassou & Naugolnykh

Late Devonian

 Morocco

A member of Lycopodiophyta of uncertain phylogenetic placement. Genus includes new species R. michardis.

[154]

Sp. nov

In press

Han & Yan in Han et al.

Late Triassic

Nanying’er Formation

 China

A liverwort.

[155]

Gen. et sp. nov

In press

Friis, Crane & Pedersen

Early Cretaceous (Berriasian)

 Denmark

A plant of uncertain phylogenetic placement, possibly close to cycads. Genus includes new species S. galtieri.

[137]

Sp. nov

In press

Bouju et al.

Miocene

Ethiopian amber

 Ethiopia

A liverwort belonging to the family Lejeuneaceae.

Velascoa[156]

Gen. et sp. nov

Junior homonym

Flores Barragan, Velasco de León & Ortega Chavez

Permian

 Mexico

Fossil leaves of a plant of uncertain phylogenetic placement, with a morphology similar to Ginkgophyta. Genus includes new species V. pueblensis. The generic name is preoccupied by Velascoa Calderón & Rzedowski (1997).

[157]

Gen. et sp. nov

In press

Vachard, Bucur & Munnecke

Silurian

 Sweden

A green alga belonging to the group Bryopsidales. Genus includes new species V. gotlandica.

Zosterophyllum confertum[158]

Sp. nov

In press

Gossmann et al.

Early Devonian

 Germany

A zosterophyll.

Research[]

  • Strother & Foster (2021) describe an assemblage of fossil spores from the Ordovician (Tremadocian) of Australia, representing a morphology that was intermediate morphology between confirmed land plant spores and earlier forms of uncertain phylogenetic placement, and evaluate the implications of these fossils for the knowledge of the evolution of land plants from their algal ancestors.[159]
  • A study on changes of the morphological complexity of reproductive structures of land plants throughout their evolutionary history, based on data from fossil and extant land plants, is published by Leslie, Simpson & Mander (2021).[160]
  • Revision of Silurian (Wenlock to Přídolí) assemblages of polysporangiophytes with dispersed spores and cryptospores, aiming to determine the relationship between Silurian plant evolution and climate changes linked with perturbations of the global carbon cycle, is published by Pšenička et al. (2021).[161]
  • Reconstruction of the structure and development of the rooting system of Asteroxylon mackiei is presented by Hetherington et al. (2021).[162]
  • A study on factors influencing the extent of arboreal vegetation during the Late Paleozoic icehouse is published by Matthaeus et al. (2021), who interpret their findings as indicating that Pangaea could have supported widespread arboreal plant growth and forest cover based on leaf water constraints, but the forest extent was restricted because of impact of freezing on plants, and estimate that contracting forest cover increased net global surface runoff by up to 6.1%.[163]
  • Description of the reproductive organs of the lycopsids from the Upper Devonian Wutong Formation (China), and a study on the ability of the sporophyll units for wind dispersal, is published by Zhou et al. (2021), who name new form species longshanensis and Lepidophylloides changxingensis.[164]
  • A study on the anatomy of Stigmaria asiatica is published by Chen et al. (2021).[165]
  • Stump casts of Sigillaria, preserving traces of internal anatomy, are described from the earliest Permian Wuda Tuff (China) by D'Antonio et al. (2021).[166]
  • A study aiming to determine probable causes of the world-wide proliferation of members of Isoetales, particularly Pleuromeia, during and in the aftermath of the Permian–Triassic extinction event, and evaluating the implications of this proliferation for the knowledge of environmental stresses during and in the aftermath of this extinction event, is published by Looy, van Konijnenburg-van Cittert & Duijnstee (2021).[167]
  • New fossil material of salisburioides, providing new information on leaf morphology and growth of this plant, is described from the Permian Umm Irna Formation (Jordan) by Kerp et al. (2021), who interpret their findings as indicating that Saportaea grandifolia and Baiera virginiana were synonyms of S. salisburioides, and possibly indicating that the fructification belonging to the genus Nystroemia is a part of Saportaea.[168]
  • Description of Geinitzia reichenbachii from its gross morphology to the cellular scale, and a study on the likely ecology of this conifer, is published by Moreau et al. (2021).[169]
  • A study on the evolutionary history of the family Cycadaceae, based on genomic data and fossil record, is published by Liu et al. (2021).[170]
  • Well-preserved recurved cupules of seed plants are described from the Lower Cretaceous of China by Shi et al. (2021), who interpret the structure of these cupules as consistent with the recurved form and development of the second integument in the bitegmic anatropous ovules of flowering plants, and evaluate the implications of these fossils for the knowledge of the origin of the flowering plants.[171]
  • Taxonomically diverse flora from the Seafood Salad locality, found ~65 m below the Cretaceous-Paleogene boundary in the Hell Creek Formation (Montana, United States), is described by Wilson, Wilson Mantilla & Strӧmberg (2021), who study the affinities of plants of this locality and compare them with other Late Cretaceous floras of the Western Interior.[172]
  • A study on the timing of the origin of the flowering plants, based on data from fossil record and from the diversity of extant members of this group, is published by Silvestro et al. (2021), who interpret their findings as indicating that several flowering plant families originated in the Jurassic.[173]
  • A study on the diversity of insect damage types in fossil plants from the Cretaceous (Albian to Cenomanian) Dakota Formation (United States), evaluating their implications for the knowledge of the early evolution of angiosperm florivory and associated pollination, is published by Xiao et al. (2021).[174]
  • A study on the fossil pollen record from New Zealand, dating from 100 million years ago to the present, is published by Prebble et al. (2021), who report evidence indicating that Cretaceous diversification was closely followed by an increase in flowering plants frequency, but their maximum frequency did not occur until the Eocene.[175]
  • New fossil material of dilae is described from the Lower Cretaceous Yixian Formation (China) by Wang et al. (2021), who reconstruct the whole plant of Callianthus, interpreting it as an aquatic flowering plant.[176]
  • A study on the anatomy of the epidermal features of the floating leaves of angulata from the Upper Cretaceous Yong'ancun Formation (China) is published by Liang et al. (2021).[177]
  • A study on plant extinction and ecological change in tropical forests resulting from the Cretaceous–Paleogene extinction event, based on data from fossil pollen and leaves from Colombia, is published by Carvalho et al. (2021), who report evidence indicative of a long interval of low plant diversity in the Neotropics after the end-Cretaceous extinction, and the emergence of forests with a structure resembling modern Neotropical rainforests, with a closed canopy and multistratal structure dominated by flowering plants, during the Paleocene.[178]
  • A study on the evolutionary history of palms throughout the Cenozoic era, aiming to determine the impact of Cenozoic environmental changes on the diversification and biogeography of palms, is published by Lim et al. (2021).[179]
  • A study on wood anatomy in extant and fossil members of Fagales is published by Wheeler, Baas & who transfer the Eocene species Myrica scalariformis Kruse (1954) and Myrica absarokensis Wheeler, Scott, & Barghoorn (1978) to the genus Morella.[180]
  • A study on the impact of the mid-Eocene greenhouse warming event on floras from southernmost South America is published by Fernández et al. (2021).[181]
  • Evidence from middle Eocene-middle Miocene tuffaceous deposits of central and northern Patagonia, indicating that soils, vegetation, insects and mammal herbivores began to record diverse traits related to the presence of grasslands with mosaic vegetation since middle Eocene, is presented by Bellosi et al. (2021).[182]
  • A study on Middle Miocene microfloral assemblages from ten localities in the Madrid Basin (Spain), providing evidence of prevalence of open habitats with grass-dominated, savannah-like vegetation under a warm and semi-arid climatic regime in the Iberian Peninsula in the Middle Miocene, is published by Casas-Gallego et al. (2021).[183]
  • Pollens of member of the family Poaceae preserving the same morphological characteristics as that of modern cereal grains are described from a sedimentary core from Lake Acıgöl (Turkey) by Andrieu-Ponel et al. (2021), who interpret this finding as indicative of the presence of proto-cereals in Anatolia since 2.3 million years ago, likely evolving from wild Poaceae as a result of trampling, nitrogen enrichment of soils and browsing by large mammal herds, and evaluate possible benefits from the availability of these proto-cereals for early hominins.[184]
  • A study on changes of abundance in spores and pollen record from the Danish Basin, and on their implications for the knowledge of the impact of the Triassic–Jurassic extinction event on land plants, is published by Lindström (2021).[185]
  • A study on the vegetation history in the southwestern Balkans, as indicated by pollen from the sedimentary record in the Lake Ohrid extending to 1.36 million years ago, is published by Donders et al. (2021).[186]
  • Crump et al. (2021) present a record of vegetation from the Last Interglacial based on ancient DNA from lake sediment from the Baffin Island (Canada), and report evidence of major ecosystem changes in the Arctic in response to warmth, including a ∼400 km northward range shift of dwarf birch relative to today.[187]

References[]

  1. ^ Neregato, R.; Rößler, R.; Noll, R.; Rohn, R. (2021). "New petrified calamitaleans from the Permian of the Parnaíba Basin, central-north Brazil, part III, with some concerns regarding anatomical features of Paleozoic petrified sphenophytes". Review of Palaeobotany and Palynology. 293: Article 104499. doi:10.1016/j.revpalbo.2021.104499.
  2. ^ De Benedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R. (2021). "Water fern spores (Salviniales) from the Late Cretaceous of Patagonia, Argentina". Review of Palaeobotany and Palynology. 290: Article 104428. doi:10.1016/j.revpalbo.2021.104428. S2CID 234815591.
  3. ^ a b c Wang, S.-J.; Wang, J.; Liu, L.; Hilton, J. (2021). "Stem diversity of the marattialean tree fern family Psaroniaceae from the earliest Permian Wuda Tuff Flora". Review of Palaeobotany and Palynology. 294: Article 104378. doi:10.1016/j.revpalbo.2021.104378. S2CID 234276315.
  4. ^ Poinar, G. (2021). "A new fern, Cladarastega burmanica gen. et sp. nov. (Dennstaedtiaceae: Polypodiales) in mid-Cretaceous Burmese amber". Palaeodiversity. 14 (1): 153–160. doi:10.18476/pale.v14.a7.
  5. ^ Tian, N.; Wang, Y.-D.; Jiang, Z.-K. (2021). "A new permineralized osmundaceous rhizome with fungal remains from the Jurassic of western Liaoning, NE China". Review of Palaeobotany and Palynology. 290: Article 104414. doi:10.1016/j.revpalbo.2021.104414. S2CID 233549860.
  6. ^ a b Pigg, K. B.; DeVore, M. L.; Greenwood, D. R.; Sundue, M. A.; Schwartsburd, P.; Basinger, J. F. (2021). "Fossil Dennstaedtiaceae and Hymenophyllaceae from the Early Eocene of the Pacific Northwest". International Journal of Plant Sciences. 182 (9): 793–807. doi:10.1086/715633. S2CID 239036762.
  7. ^ Sun, W.; Li, D.; Zhou, W.; Bek, J.; Liu, L.; Wang, J. (2021). "Eoangiopteris congestus sp. nov., a marattialean fern from the Lower Permian Taiyuan Formation of Wuda Coalfield, Inner Mongolia". Acta Palaeontologica Sinica. 60 (2): 224–242. doi:10.19800/j.cnki.aps.2020012.
  8. ^ Correia, P.; Šimůnek, Z.; Sá, A. A. (2021). "The equisetalean Iberisetum wegeneri gen. nov., sp. nov. from the Upper Pennsylvanian of Portugal". Historical Biology: An International Journal of Paleobiology. 33 (12): 3495–3505. doi:10.1080/08912963.2021.1874373. S2CID 234064743.
  9. ^ Wang, S.; Long, X.; Zhang, H.; Cai, H.; Engel, M. S.; Shi, C. (2021). "A semi-aquatic fern (Marsileaceae) from the mid-Cretaceous amber of northern Myanmar". Cretaceous Research. in press: Article 105119. doi:10.1016/j.cretres.2021.105119. S2CID 245298780.
  10. ^ Pšenička, J.; Wang, J.; Bek, J.; Pfefferkorn, H. W.; Opluštil, S.; Zhou, W.; Frojdová, J.; Libertín, M. (2021). "A zygopterid fern with fertile and vegetative parts in anatomical and compression preservation from the earliest Permian of Inner Mongolia, China". Review of Palaeobotany and Palynology. 294: Article 104382. doi:10.1016/j.revpalbo.2021.104382. S2CID 234092362.
  11. ^ Mazaheri-Johari, M.; Kustatscher, E.; Roghi, G.; Ghasemi-Nejad, E.; Gianolla, P. (2021). "A monotypic stand of Neocalamites iranensis n. sp. from the Carnian Pluvial Episode (Late Triassic) of the Aghdarband area, NE Iran (Turan Plate)". Rivista Italiana di Paleontologia e Stratigrafia. 127 (2): 189–209. doi:10.13130/2039-4942/15646.
  12. ^ Pšenička, J.; Sakala, J.; Dašková, J. (2021). "Odontosoria marekgaltieri sp. nov. (Lindsaeaceae), a new fern from the early Miocene of the Czech Republic: First evidence of the genus in the fossil record". Review of Palaeobotany and Palynology. 297: Article 104580. doi:10.1016/j.revpalbo.2021.104580.
  13. ^ Votočková Frojdová, J.; Wang, J.; Pšenička, J.; Bek, J.; Opluštil, S.; Libertín, M. (2021). "A new leptosporangiate fern Oligosporangiopteris zhongxiangii gen. and sp. nov. from the lowermost Permian of Inner Mongolia, China – morphology, anatomy and reproductive organs". Review of Palaeobotany and Palynology. 294: Article 104479. doi:10.1016/j.revpalbo.2021.104479. S2CID 237931032.
  14. ^ Wang, Z.; Shi, G.; Sun, B.; Dong, C.; Yin, S.; Wu, X. (2021). "A new species of Osmunda L. (Osmundaceae) from the middle Miocene of Fujian, Southeast China". Acta Palaeontologica Sinica. 60 (3): Article 2021045. doi:10.19800/j.cnki.aps.2021045.
  15. ^ Gnaedinger, S. C.; Zavattieri, A. M. (2021). "A new Late Triassic dipteridacean fern from the Paso Flores Formation, Neuquén Basin, Argentina". Acta Palaeontologica Polonica. 66 (4): 885–900. doi:10.4202/app.00864.2020.
  16. ^ Zhou, Y.; Guo, Y.; Pšenička, J.; Bek, J.; Yang, S.-L.; Feng, Z. (2021). "A new marattialean fern, Pectinangium xuanweiense sp. nov., from the Lopingian of Southwest China". Review of Palaeobotany and Palynology. 295: Article 104500. doi:10.1016/j.revpalbo.2021.104500.
  17. ^ Guo, Y.; Zhou, Y.; Bek, J.; Yang, S.-L.; Feng, Z. (2021). "Qasimia yunnanica sp. nov., a marattialean fern with bivalvate synangia from the Lopingian of Southwest China". Review of Palaeobotany and Palynology. 293: Article 104497. doi:10.1016/j.revpalbo.2021.104497.
  18. ^ He, X.-Y.; Hilton, J.; Wang, S.-J.; Cheng, X.-S. (2021). "Exploring the stem to crown group transition in Marattiales: A new species of frond from the late Permian of China with features of the Psaroniaceae and Marattiaceae". Review of Palaeobotany and Palynology. 295: Article 104506. doi:10.1016/j.revpalbo.2021.104506.
  19. ^ Huang, P.; Liu, L.; Liu, L.; Wang, J.-S.; Xue, J.-Z. (2021). "Sphenophyllum Brongniart (Sphenopsida) from the Upper Devonian of South China". Palaeoworld. in press. doi:10.1016/j.palwor.2021.09.007. S2CID 242991171.
  20. ^ Libertín, M.; Bek, J.; Wang, J.; Opluštil, S.; Pšenička, J.; Votočková Frojdová, J. (2021). "New data about three sphenophylls and their spores from the volcanic tuff of Wuda, Taiyuan Formation, earliest Permian, China". Review of Palaeobotany and Palynology. 294: Article 104484. doi:10.1016/j.revpalbo.2021.104484.
  21. ^ Machado, M. A.; Vera, E. I.; Passalia, M. G.; Ponce, M. M. (2021). "Eupolypod ferns with dryopteroid/thelypteroid traits from Arroyo Chacay (Huitrera Formation, Eocene), Río Negro Province, Argentina". Review of Palaeobotany and Palynology. 287: Article 104381. doi:10.1016/j.revpalbo.2021.104381. S2CID 233532654.
  22. ^ Zhang, H.-R.; Shi, C.; Long, X.-X.; Feng, Q.; Cai, H.-H.; Lü, Y.-T.; Wang, S. (2021). "A new fossil record of Thyrsopteridaceae (Cyatheales) from the mid-Cretaceous amber of Myanmar". Palaeoworld. in press. doi:10.1016/j.palwor.2021.09.002. S2CID 240519538.
  23. ^ Song, H.-Z.; Naugolnykh, S. V.; Wu, X.-K.; Liu, X.-Y.; Jin, J.-H. (2021). "Fertile Woodwardia from the middle Eocene of South China and its implications for palaeogeography and palaeoclimate". Plant Diversity. in press. doi:10.1016/j.pld.2021.09.003.
  24. ^ a b c Blomenkemper, P.; Bäumer, R.; Backer, M.; Abu Hamad, A.; Wang, J.; Kerp, H.; Bomfleur, B. (2021). "Bennettitalean Leaves From the Permian of Equatorial Pangea—The Early Radiation of an Iconic Mesozoic Gymnosperm Group". Frontiers in Earth Science. 9: Article 652699. Bibcode:2021FrEaS...9..162B. doi:10.3389/feart.2021.652699.
  25. ^ Guzmán-Madrid, D. S.; Velasco de León, M. P. (2021). "Weltrichia magna sp. nov., a new record for the Middle Jurassic of Oaxaca, México". Acta Palaeobotanica. 61 (1): 95–106. doi:10.35535/acpa-2021-0005. S2CID 237760410.
  26. ^ Lozano-Carmona, D. E.; Corro-Ortiz, M. G.; Morales, R. L.; Velasco-de León, M. P. (2021). "Weltrichia xochitetlii sp. nov. (Bennettitales) from the Middle Jurassic of northwestern Oaxaca, Mexico: First paleobotanical evidence from the Tecomazúchil formation". Journal of South American Earth Sciences. 108: Article 103230. Bibcode:2021JSAES.10803230L. doi:10.1016/j.jsames.2021.103230. S2CID 234085434.
  27. ^ Lozano-Carmona, D. E.; Velasco-de León, M. P. (2021). "Bennettitales from the Middle Jurassic of northwestern Oaxaca, Mexico: Diversity, sedimentary environments, and phytogeography". Journal of South American Earth Sciences. 110: Article 103404. Bibcode:2021JSAES.11003404L. doi:10.1016/j.jsames.2021.103404.
  28. ^ Van Konijnenburg-van Cittert, J. H. A.; Pott, C.; Schmeißner, S.; Dütsch, G.; Kustatscher, E. (2021). "The Rhaetian flora of Wüstenwelsberg, Bavaria, Germany: Description of selected gymnosperms (Ginkgoales, Cycadales, Coniferales) together with an ecological assessment of the locally prevailing vegetation". Review of Palaeobotany and Palynology. 288: Article 104398. doi:10.1016/j.revpalbo.2021.104398. S2CID 233918337.
  29. ^ Spiekermann, R.; Jasper, A.; Siegloch, A. M.; Guerra-Sommer, M.; Uhl, D. (2021). "Not a lycopsid but a cycad-like plant: Iratinia australis gen. nov. et sp. nov. from the Irati Formation, Kungurian of the Paraná Basin, Brazil". Review of Palaeobotany and Palynology. 289: Article 104415. doi:10.1016/j.revpalbo.2021.104415. S2CID 233860955.
  30. ^ Tang, D.-L.; Wang, Z.-E.; Huang, Y.-T.; Ding, H.; Ding, S.-T.; Wu, J.-Y. (2021). "A new species of Eretmophyllum (Ginkgoales) from the Middle Jurassic of Turpan-Hami Basin, Xinjiang, China". Palaeoworld. in press. doi:10.1016/j.palwor.2021.12.001. S2CID 245302175.
  31. ^ Andruchow-Colombo, A.; Gandolfo, M. A.; Cúneo, N. R.; Escapa, I. H. (2021). "Ginkgoites villardeseoanii sp. nov., a ginkgophyte with insect damage from the Upper Cretaceous (Maastrichtian) Lefipán Formation (Chubut, Patagonia, Argentina)". Cretaceous Research. in press: Article 105124. doi:10.1016/j.cretres.2021.105124.
  32. ^ Afonin, M.; Gromyko, D. (2021). "First record of Ginkgoxylon (Ginkgoales) fossil wood in the Lower Cretaceous of the Arctic region". Cretaceous Research. 125: Article 104868. doi:10.1016/j.cretres.2021.104868.
  33. ^ Nosova, N.; Crane, P. R.; Shi, G. (2021). "Ovule-bearing structures of Karkenia Archangelsky, associated dispersed seeds and Sphenobaiera leaves from the Middle Jurassic of East Siberia, Russia". Review of Palaeobotany and Palynology. 295: Article 104522. doi:10.1016/j.revpalbo.2021.104522. S2CID 239696262.
  34. ^ Nosova, N. V.; Kostina, E. I.; Bugdaeva, E. V. (2021). "Pseudotorellia Florin from the Upper Jurassic–Lower Cretaceous of the Bureya Basin, Russian Far East". Stratigraphy and Geological Correlation. 29 (4): 434–449. Bibcode:2021SGC....29..434N. doi:10.1134/S0869593821040031.
  35. ^ a b Nosova, N. (2021). "Female reproductive structures of Umaltolepis Krassilov and associated leaves of Pseudotorellia Florin from the Middle Jurassic of East Siberia, Russia". Review of Palaeobotany and Palynology. 289: Article 104412. doi:10.1016/j.revpalbo.2021.104412. S2CID 233790779.
  36. ^ Del Fueyo, G. M.; Carrizo, A.; Poiré, D. G.; Lafuente Diaz, M. A. (2021). "Recurrent volcanic activity recorded in araucarian wood from the Lower Cretaceous Springhill Formation, Patagonia, Argentina: Palaeoenvironmental interpretations". Acta Palaeontologica Polonica. 66 (1): 231–253. doi:10.4202/app.00783.2020.
  37. ^ dos Santos, Â. C. S.; Siegloch, A. M.; Guerra-Sommer, M.; Degani-Schmidt, I.; Carvalho, I. S. (2021). "Agathoxylon santanensis sp. nov. from the Aptian Crato fossil Lagerstätte, Santana Formation, Araripe Basin, Brazil". Journal of South American Earth Sciences. 112, Part 2: Article 103633. Bibcode:2021JSAES.11203633S. doi:10.1016/j.jsames.2021.103633. S2CID 244110901.
  38. ^ Batista, M. E. P.; Loiola, M. I. B.; Soares, A. A.; Mastroberti, A. A.; Sá, A. A.; Nascimento Jr., D. R.; Silva Filho, W. F.; Kunzmann, L. (2021). "New Insights into the Evolution of Mucilage Cells in Araucariaceae: Araucaria violetae sp. nov. from the Early Cretaceous Araripe Basin (Northeast Brazil)". International Journal of Plant Sciences. 183 (1): 43–60. doi:10.1086/717104. S2CID 239548378.
  39. ^ Yang, X.-J.; Li, J.-G. (2021). "A petrified wood Brachyoxylon from the Lower Cretaceous of Bangoin, Tibet (Xizang), Southwest China". Cretaceous Research. 130: Article 105064. doi:10.1016/j.cretres.2021.105064. S2CID 240429516.
  40. ^ Rombola, C. F.; Greppi, C. D.; Pujana, R. R.; García Massini, J. L.; Bellosi, E. S.; Marenssi, S. A. (2021). "Brachyoxylon fossil woods with traumatic resin canals from the Upper Cretaceous Cerro Fortaleza Formation, southern Patagonia (Santa Cruz Province, Argentina)". Cretaceous Research. 130: Article 105065. doi:10.1016/j.cretres.2021.105065. S2CID 239597933.
  41. ^ de Wit, M.; Bamford, M. (2021). "Fossil wood from the Upper Cretaceous crater sediments of the Salpeterkop volcano, North West Province, South Africa". South African Journal of Geology. 124 (3): 751–760. doi:10.25131/sajg.124.0028.
  42. ^ Wu, X.; Zhang, H.; Kodrul, T. M.; Maslova, N. P.; Jiang, S.; Yin, Q.; Quan, C.; Jin, J. (2021). "First Fossil Fokienia (Cupressaceae) in South China and Its Palaeogeographic and Palaeoecological Implications". Frontiers in Earth Science. 9: Article 709663. Bibcode:2021FrEaS...9..555W. doi:10.3389/feart.2021.709663.
  43. ^ Herrera, F.; Shi, G.; Bickner, M. A.; Ichinnorov, N.; Leslie, A. B.; Crane, P. R.; Herendeen, P. S. (2021). "Early Cretaceous abietoid Pinaceae from Mongolia and the history of seed scale shedding". American Journal of Botany. 108 (8): 1483–1499. doi:10.1002/ajb2.1713. PMID 34458982. S2CID 239667187.
  44. ^ Wan, M.; Wang, J.; Shi, T.; Wang, K.; Tang, P.; Wang, J. (2021). "Megaporoxylon sinensis sp. nov., a new coniferous trunk from the Upper Triassic of northern Bogda Mountains, northwestern China". Review of Palaeobotany and Palynology. 295: Article 104536. doi:10.1016/j.revpalbo.2021.104536. S2CID 244206721.
  45. ^ a b Atkinson, B. A.; Contreras, D. L.; Stockey, R. A.; Rothwell, G. W. (2021). "Ancient diversity and turnover of cunninghamioid conifers (Cupressaceae): two new genera from the Upper Cretaceous of Hokkaido, Japan". Botany. 99 (8): 457–473. doi:10.1139/cjb-2021-0005. S2CID 237705866.
  46. ^ Ding, S.-T.; Chen, S.-Y.; Ruan, S.-C.; Yang, M.; Han, Y.; Wang, X.-H.; Zhang, T.-H.; Sun, B.-N. (2021). "First fossil record of Nothotsuga (Pinaceae) in China: implications for palaeobiogeography and palaeoecology". Historical Biology: An International Journal of Paleobiology. 33 (12): 3617–3624. doi:10.1080/08912963.2021.1881781. S2CID 233975517.
  47. ^ a b c Dolezych, M.; LePage, B. A.; Williams, C. J. (2021). "A Chattian-Aquitanian wood flora from the West Siberian Plain: Implications for regional palaeobiogeography". Palaeontographica Abteilung B. 302 (1–6): 37–169. doi:10.1127/palb/2021/0074. S2CID 237651777.
  48. ^ Zhang, J.-W.; Wang, L.; D’Rozario, A.; Liang, X.-Q.; Huang, J.; Zhou, Z.-K. (2021). "Pinus leptokrempfii, an Oligocene Relative of the Flat-Needled Pine P. krempfii (Pinaceae) from China: Implications for Paleogeographic Origin". International Journal of Plant Sciences. 182 (5): 389–400. doi:10.1086/713957. S2CID 233888471.
  49. ^ Grote, P. J.; Srisuk, P. (2021). "Fossil Pinus from the Cenozoic of Thailand". Review of Palaeobotany and Palynology. 295: Article 104501. doi:10.1016/j.revpalbo.2021.104501.
  50. ^ Li, Y.; Yi, T.-M.; Grote, P. J.; An, P.-C.; Zhu, Y.-B.; Zhang, Z.-Y.; Li, C.-S. (2021). "A new species of Pinus (Pinaceae) from the Miocene of Weichang, Hebei Province, China and its evolutionary significance". Historical Biology: An International Journal of Paleobiology. in press: 1–12. doi:10.1080/08912963.2021.1952197. S2CID 237692568.
  51. ^ Wu, J.; Chen, H.; Ruan, S.; Yang, M.; Mo, L.; Ji, B.; Zhang, J.; Ding, S. (2021). "Fossil leaves of Podocarpus subgenus Foliolatus (Podocarpaceae) from the Pliocene of southwestern China and biogeographic history of Podocarpus". Review of Palaeobotany and Palynology. 287: Article 104380. doi:10.1016/j.revpalbo.2021.104380. S2CID 234282697.
  52. ^ a b Nhamutole, N.; Bamford, M.; Araújo, R. (2021). "New species of Protaxodioxylon (conifer wood) from the Middle Permian of the Metangula Graben (Niassa Province, Mozambique) and their implications". Journal of African Earth Sciences. 183: Article 104323. Bibcode:2021JAfES.18304323N. doi:10.1016/j.jafrearsci.2021.104323.
  53. ^ Gou, X.-D.; Feng, Z.; Wei, H.-B.; Lv, Y.; Yang, S.-L. (2021). "A new Protophyllocladoxylon stem from the Xishanyao Formation (Middle Jurassic) in the Santanghu Basin, Xinjiang, Northwest China". Review of Palaeobotany and Palynology. 292: Article 104474. doi:10.1016/j.revpalbo.2021.104474.
  54. ^ Matsunaga, K. K. S.; Herendeen, P. S.; Herrera, F.; Ichinnorov, N.; Crane, P. R.; Shi, G. (2021). "Ovulate Cones of Schizolepidopsis ediae sp. nov. Provide Insights into the Evolution of Pinaceae". International Journal of Plant Sciences. 182 (6): 490–507. doi:10.1086/714281. S2CID 235426888.
  55. ^ Forte, G.; Kustatscher, E.; Van Konijnenburg-van Cittert, J. H. A. (2021). "Conifer diversity in the Middle Triassic: new data from the Fossillagerstätte Kühwiesenkopf/Monte Prà della Vacca (Pelsonian, Anisian) in the Dolomites (NE Italy)". International Journal of Plant Sciences. 182 (6): 445–467. doi:10.1086/714280. S2CID 233649930.
  56. ^ Kvaček, J.; Mendes, M. M. (2021). "A new Cheirolepidiaceae conifer Watsoniocladus cunhae sp. nov. from the Early Cretaceous (late Aptian–early Albian) of western Portugal". Review of Palaeobotany and Palynology. 295: Article 104519. doi:10.1016/j.revpalbo.2021.104519.
  57. ^ Xie, A.; Gee, C. T.; Bennis, M. B.; Gray, D.; Sprinkel, D. A. (2021). "A more southerly occurrence of Xenoxylon in North America: X. utahense Xie et Gee sp. nov. from the Upper Jurassic Morrison Formation in Utah, USA, and its paleobiogeographic and paleoclimatic significance". Review of Palaeobotany and Palynology. 291: Article 104451. doi:10.1016/j.revpalbo.2021.104451. S2CID 236239787.
  58. ^ Wan, M.; Yang, W.; Wang, K.; Liu, L.; Wang, J. (2021). "Zhuotingoxylon liaoi gen. et sp. nov., a silicified coniferous trunk from the Changhsingian (Permian) of southern Bogda Mountains, northwestern China". Geological Journal. 56 (12): 6135–6150. doi:10.1002/gj.4189. S2CID 236276022.
  59. ^ Stockey, R. A.; Hoffman, G. L.; Rothwell, G. W. (2021). "Fossil evidence for Paleocene diversification of Araceae: Bognerospadix gen. nov. and Orontiophyllum grandifolium comb. nov". American Journal of Botany. 108 (8): 1417–1440. doi:10.1002/ajb2.1707. PMID 34431509. S2CID 237292226.
  60. ^ a b Doweld, A. B. (2021). "New names in Pittosporum, extant and fossil (Pittosporaceae)". Phytotaxa. 498 (4): 298–300. doi:10.11646/phytotaxa.498.4.9. S2CID 235540500.
  61. ^ a b c d e Doweld, A. B. (2021). "Fossil Alloceltidoxylon, Allonymphaea, Arecocaryon, Paralnoxylon and Paranyssa and extant Komaroviopsis, Marcanodendron, and Papyrocactus (Magnoliophyta), new replacement generic names". Phytotaxa. 524 (2): 92–98. doi:10.11646/phytotaxa.524.2.3. S2CID 243482734.
  62. ^ Song, A.; Liu, J.; Liang, S.-Q.; Do, T. V.; Nguyen, H. B.; Deng, W.-Y.-D.; Jia, L.-B.; Del Rio, C.; Srivastava, G.; Feng, Z.; Zhou, Z.-K.; Huang, J.; Su, T. (2021). "Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications". Plant Diversity. in press. doi:10.1016/j.pld.2021.08.003.
  63. ^ Brea, M.; Iglesias, A.; Wilf, P.; Moya, E.; Gandolfo, M. A. (2021). "First South American Record of Winteroxylon, Eocene of Laguna del Hunco (Chubut, Patagonia, Argentina): New Link to Australasia and Malesia". International Journal of Plant Sciences. 182 (3): 185–197. doi:10.1086/712427. S2CID 232050459.
  64. ^ a b Sender, L. M.; Doyle, J. A.; Upchurch, G. R.; Endress, P. K.; Villanueva-Amadoz, U.; Diez, J. B. (2021). "Evidence on vegetative and inflorescence morphology of Chloranthaceae (Angiospermae) from the Early Cretaceous (middle–late Albian) of Spain". Journal of Systematic Palaeontology. 18 (24): 2015–2042. doi:10.1080/14772019.2021.1873434. S2CID 232116303.
  65. ^ Xie, S.-P.; Zhang, S.-H.; McElwain, J. C.; Zhang, P.; Wang, B.; Zhang, Y.; Yang, Y.-H.; Chen, J.-Y. (2021). "First occurrence of Camptotheca fruits from late Miocene of southwestern China". Historical Biology: An International Journal of Paleobiology. 33 (12): 3625–3632. doi:10.1080/08912963.2021.1881782. S2CID 234020768.
  66. ^ Xu, S.-L.; Kodrul, T. M.; Maslova, N. P.; Song, H.-Z.; Tobias, A. V.; Wu, X.-K.; Quan, C.; Jin, J.-H. (2021). "First occurrence of Nyssa endocarps and associated fungi in the Oligocene of South China: palaeogeographical and palaeoecological significance". Papers in Palaeontology. in press. doi:10.1002/spp2.1408. S2CID 244057027.
  67. ^ Denk, T.; Bouchal, J. M. (2021). "Dispersed pollen and calyx remains of Diospyros (Ebenaceae) from the middle Miocene "Plant beds" of Søby, Denmark". GFF. 143 (2–3): 292–304. doi:10.1080/11035897.2021.1907443. S2CID 237648462.
  68. ^ Kvaček, Z. (2021). "Halesia mosbruggeri Kvaček, sp. nov., a new fossil fruit of Halesia L. (Styracaceae) from the Bohemian Miocene (Czech Republic)". Palaeobiodiversity and Palaeoenvironments. 101 (1): 75–78. doi:10.1007/s12549-020-00463-y. S2CID 232127283.
  69. ^ Erdei, B.; Hably, L. (2021). "Fossil Gordonia (s.l.)–like (Theaceae) winged seeds from the early Miocene of the Mecsek Mts, W Hungary". Palaeobiodiversity and Palaeoenvironments. 101 (1): 59–67. doi:10.1007/s12549-020-00461-0.
  70. ^ Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2021). "Early flowers of primuloid Ericales from the Late Cretaceous of Portugal and their ecological and phytogeographic implications". Fossil Imprint. 77 (2): 214–230. doi:10.37520/fi.2021.016.
  71. ^ a b Striegler, U. (2021). "New leaf species from the upper Miocene flora of the leaf-bearing Wischgrund clay (Lower Lusatia, Brandenburg, Germany)". Fossil Imprint. 77 (1): 102–110. doi:10.37520/fi.2021.009. S2CID 245028668.
  72. ^ a b Hazra, T.; Hazra, M.; Spicer, R. A.; Spicer, T. E. V.; Mahato, S.; Bera, S.; Kumar, S.; Khan, M. A. (2021). "Pliocene Albizia (Fabaceae) from Jharkhand, eastern India: reappraisal of its biogeography during Cenozoic in Southeast Asia". Palaeoworld. in press. doi:10.1016/j.palwor.2021.03.004. S2CID 233521737.
  73. ^ Wang, Z.; Shi, G.; Sun, B.; Jia, H.; Dong, C.; Yin, S.; Wu, X. (2021). "A new Cercis (Leguminosae) from the middle Miocene of Fujian, China". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2021.1900170. S2CID 233645060.
  74. ^ Jia, L.-B.; Huang, J.; Su, T.; Spicer, R. A.; Zhang, S.-T.; Li, S.-F.; Pan, B.; Nam, G.-S.; Huang, Y.-J.; Zhou, Z.-K. (2021). "Fossil infructescence from southwestern China reveals Paleogene establishment of Cladrastis in Asia". Review of Palaeobotany and Palynology. 292: Article 104456. doi:10.1016/j.revpalbo.2021.104456.
  75. ^ a b Pérez-Lara, D. K.; Estrada-Ruiz, E.; Castañeda-Posadas, C. (2021). "Kingiodendron and Enterolobium Eocene woods from the El Bosque formation, Chiapas, Mexico". Journal of South American Earth Sciences. 111: Article 103477. Bibcode:2021JSAES.11103477P. doi:10.1016/j.jsames.2021.103477. S2CID 237819942.
  76. ^ Baez, J. (2021). "First fossil record in Tambería formation (Neogene) in Bolsón de Fiambalá, Catamarca province, Argentina: Palaeoenvironmental inferences through Leguminosae woods". Journal of South American Earth Sciences. 110: Article 103403. Bibcode:2021JSAES.11003403B. doi:10.1016/j.jsames.2021.103403.
  77. ^ Li, X.; Manchester, S. R.; Correa-Narvaez, J. E.; Herendeen, P. S. (2021). "An Extinct Fruit Species of Fabaceae from the Early Eocene of Northwestern Wyoming, USA". International Journal of Plant Sciences. 182 (8): 730–746. doi:10.1086/715634. S2CID 237505717.
  78. ^ Centeno-González, N. K.; Martínez-Cabrera, H. I.; Porras-Múzquiz, H.; Estrada-Ruiz, E. (2021). "Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation". Communications Biology. 4 (1): Article number 41. doi:10.1038/s42003-020-01533-9. PMC 7809014. PMID 33446929.
  79. ^ Hazra, T.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First Fossil Legume Flower of Papilionoid Affinity from India". Journal of the Geological Society of India. 97 (3): 267–270. doi:10.1007/s12594-021-1677-3. S2CID 232164301.
  80. ^ Li, X.-C.; Manchester, S. R.; Xiao, L.; Wang, Q.; Hu, Y.; Sun, B.-N. (2021). "Ormosia (Fabaceae: Faboideae) from the Miocene of southeastern China support historical expansion of the tropical genus in East Asia". Historical Biology: An International Journal of Paleobiology. 33 (12): 3561–3578. doi:10.1080/08912963.2021.1877700. S2CID 233806537.
  81. ^ Hazra, T.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First fossil evidence of marginal winged fruits of Peltophorum (Caesalpinioideae: Fabaceae) from India". Brittonia. 73 (3): 241–250. doi:10.1007/s12228-021-09679-4. S2CID 238855320.
  82. ^ Poinar, G. O.; Chambers, K. L. (2021). "Salpinganthium hispaniolanum gen. et sp. nov. (Fabaceae: Detarieae), a mid-Tertiary flower in Dominican amber". Journal of the Botanical Research Institute of Texas. 15 (2): 559–567. doi:10.17348/jbrit.v15.i2.1161. S2CID 245099015.
  83. ^ a b c d e f g h i j k l Akkemik, Ü. (2021). "A re-examination of the angiosperm wood record from the early and middle Miocene of Turkey, and new species descriptions". Acta Palaeobotanica. 61 (1): 42–94. doi:10.35535/acpa-2021-0004. S2CID 237741731.
  84. ^ Wilde, V.; Frankenhäuser, H.; Lenz, O. K. (2021). "A myricaceous male inflorescence with pollen in situ from the middle Eocene of Europe". Palaeobiodiversity and Palaeoenvironments. 101 (4): 873–883. doi:10.1007/s12549-020-00479-4. S2CID 233417128.
  85. ^ Hazra, T.; Hazra, M.; Kumar, S.; Mahato, S.; Bera, M.; Bera, S.; Khan, M. A. (2021). "First fossil evidence of Palaeocarya (Engelhardioideae: Juglandaceae) from India and its biogeographical implications". Journal of Systematics and Evolution. 59 (6): 1307–1320. doi:10.1111/jse.12736. S2CID 233897694.
  86. ^ Shukla, A.; Mehrotra, R. C.; Verma, P.; Chandra, K.; Singh, A. (2021). ""Out-of-India" dispersal for Adina (tribe Naucleeae; family Rubiaceae): evidence from the early Eocene fossil record from India". Palaeoworld. 30 (4): 737–745. doi:10.1016/j.palwor.2021.01.001. S2CID 234244901.
  87. ^ Singh, H.; Judd, W. S.; Samant, B.; Agnihotri, P.; Grimaldi, D. A.; Manchester, S. R. (2021). "Flowers of Apocynaceae in amber from the early Eocene of India". American Journal of Botany. 108 (5): 883–892. doi:10.1002/ajb2.1651. PMID 34018178. S2CID 235073745.
  88. ^ Franco, M. J.; Brea, M.; Cerdeño, E. (2021). "First Bignoniaceae liana from the Miocene of South America and its evolutionary significance". American Journal of Botany. 108 (9): 1761–1774. doi:10.1002/ajb2.1736. PMID 34591314. S2CID 238230695.
  89. ^ Mathewes, R.; Archibald, S. B.; Lundgren, A. (2021). "Tips and identification of early Eocene Fraxinus L. samaras from the Quilchena locality, Okanagan Highlands, British Columbia, Canada". Review of Palaeobotany and Palynology. 293: Article 104480. doi:10.1016/j.revpalbo.2021.104480.
  90. ^ Deshmukh, U. B. (2021). "Kapgateophyllum gen. nov. (Acanthaceae)". Phytotaxa. 500 (2): 147–148. doi:10.11646/phytotaxa.500.2.8. S2CID 236585198.
  91. ^ Winterscheid, H.; Kvaček, Z. (2021). "Systematic-taxonomic revision of the flora from the late Oligocene Fossillagerstätte Rott near Bonn (Germany). Part 2: Magnoliidae: Basal angiosperms and magnoliids". Palaeontographica Abteilung B. 303 (4–6): 119–155. doi:10.1127/palb/2021/0077. S2CID 244053928.
  92. ^ Cevallos-Ferriz, S. R. S.; Catharina, A. S.; Kneller, B. (2021). "Cretaceous Lauraceae wood from El Rosario, Baja California, Mexico". Review of Palaeobotany and Palynology. 292: Article 104478. doi:10.1016/j.revpalbo.2021.104478.
  93. ^ Poinar, G. O. (2021). "A Monocot Flower, Mirafloris burmitis gen. et sp. nov. (Monocots: Angiospermae), in Burmese Amber". Biosis: Biological Systems. 2 (3): 342–348. doi:10.37819/biosis.002.03.0126. S2CID 238732295.
  94. ^ Reback, R. G.; Kapgate, D. K.; Wurdack, K.; Manchester, S. R. (2021). "Fruits of Euphorbiaceae from the Late Cretaceous Deccan Intertrappean Beds of India". International Journal of Plant Sciences. in press: 000. doi:10.1086/717691. S2CID 239507275.
  95. ^ Hermsen, E. J. (2021). "Review of the fossil record of Passiflora, with a description of new seeds from the Pliocene Gray Fossil Site, Tennessee, U.S.A.". International Journal of Plant Sciences. 182 (6): 533–550. doi:10.1086/714282. S2CID 233701901.
  96. ^ Wang, B.; Zhang, S.; Zhang, P.; Yang, Y.; Chen, J.; Zhang, Y.; Xie, S. (2021). "A new occurrence of Craigia (Malvaceae) from the Miocene of Yunnan and its biogeographic significance". Historical Biology: An International Journal of Paleobiology. 33 (12): 3402–3412. doi:10.1080/08912963.2020.1867980. S2CID 234188949.
  97. ^ Chen, J.; Han, L.; Hua, Y.; Wu, G.; Sun, B. (2021). "Fruits and leaves of Dipterocarpus from the Miocene of Zhangpu, Fujian, and its geological significance". Arabian Journal of Geosciences. 14 (13): Article 1270. doi:10.1007/s12517-021-07445-0. S2CID 235664238.
  98. ^ a b Huang, H.; Pérez-Pinedo, D.; Morley, R. J.; Dupont-Nivet, G.; Philip, A.; Win, Z.; Aung, D. W.; Licht, A.; Jardine, P. E.; Hoorn, C. (2021). "At a crossroads: The late Eocene flora of central Myanmar owes its composition to plate collision and tropical climate". Review of Palaeobotany and Palynology. 291: Article 104441. doi:10.1016/j.revpalbo.2021.104441. S2CID 235421153.
  99. ^ Jia, L.B.; Nam, G.S.; Su, T.; Stull, G.W.; Li, S.F.; Huang, Y.J.; Zhou, Z.K. (2021). "Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants". Plant Diversity. 43 (6): 480–491. doi:10.1016/j.pld.2020.12.006.
  100. ^ Vieira, M.; Zetter, R.; Coiro, M.; Grímsson, F. (2021). "Pliocene Lythrum (loosestrife, Lythraceae) pollen from Portugal and the Neogene establishment of European lineages". Review of Palaeobotany and Palynology. 296: Article 104548. doi:10.1016/j.revpalbo.2021.104548.
  101. ^ Li, Y.; Huang, L.; Quan, C.; Jin, J.; Oskolski, A. A. (2021). "Fossil wood of Syzygium from the Miocene of Guangxi, South China: the earliest fossil evidence of the genus in eastern Asia". IAWA Journal. 42 (4): 435–441. doi:10.1163/22941932-bja10069. S2CID 240550082.
  102. ^ a b Bamford, M.; Pickford, M. (2021). "Stratigraphy, chronology and palaeontology of the Tertiary rocks of the Cheringoma Plateau, Mozambique". Fossil Imprint. 77 (1): 187–213. doi:10.37520/fi.2021.014. S2CID 245074611.
  103. ^ Aung, A. T.; Del Rio, C.; Wang, T.-X.; Liu, J.; Spicer, T. E. V.; Su, T. (2021). "Fossil fruits and pollen grains of Trapa from the Upper Pliocene of the Sanying Formation (Yunnan, China)". Review of Palaeobotany and Palynology. 293: Article 104498. doi:10.1016/j.revpalbo.2021.104498.
  104. ^ Carvalho, M.; Herrera, F.; Gómez, S.; Martínez, C.; Jaramillo, C. (2021). "Early records of Melastomataceae from the middle-late Paleocene rainforests of South America conflict with Laurasian origins". International Journal of Plant Sciences. 182 (5): 401–412. doi:10.1086/714053. S2CID 233910850.
  105. ^ Poinar, G. O.; Chambers, K. L.; Vega, F. E. (2021). "Tropidogyne euthystyla sp. nov., a new small-flowered addition to the genus from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas. 15 (1): 113–119. doi:10.17348/jbrit.v15.i1.1053. S2CID 237700194.
  106. ^ Freitas, J.; Doweld, A. B. (2021). "Aristolochia macginitieana (Aristolochiaceae), a replacement name for Aristolochia triangularis MacGinitie non Aristolochia triangularis Chamisso". Phytotaxa. 500 (1): 59–60. doi:10.11646/phytotaxa.500.1.11. S2CID 236589284.
  107. ^ Poinar, G.; Soreng, R. J. (2021). "A New Genus and Species of Grass, Eograminis balticus (Poaceae: Arundinoideae) in Baltic Amber". International Journal of Plant Sciences. 182 (9): 808–816. doi:10.1086/716781. S2CID 239036777.
  108. ^ Patel, R.; Hazra, T.; Rana, R. S.; Hazra, M.; Bera, S.; Khan, M. A. (2021). "First fossil record of mulberry from Asia". Review of Palaeobotany and Palynology. 292: Article 104459. doi:10.1016/j.revpalbo.2021.104459.
  109. ^ Del Rio, C.; Wang, T.-X.; Xu, X.-T.; Sabroux, R.; Spicer, T. E. V.; Liu, J.; Chen, P.-R.; Wu, F.-X.; Zhou, Z.-K.; Su, T. (2021). "Ventilago (Rhamnaceae) Fruit from the Middle Eocene of the Central Tibet, China". International Journal of Plant Sciences. 182 (7): 638–648. doi:10.1086/715507. S2CID 236410986.
  110. ^ Jud, N. A.; Allen, S. E.; Nelson, C. W.; Bastos, C. L.; Chery, J. G. (2021). "Climbing since the early Miocene: The fossil record of Paullinieae (Sapindaceae)". PLOS ONE. 16 (4): e0248369. Bibcode:2021PLoSO..1648369J. doi:10.1371/journal.pone.0248369. PMC 8026063. PMID 33826635.
  111. ^ Rodríguez-Reyes, O.; Estrada-Ruiz, E.; Monje Dussán, C.; de Andrade Brito, L.; Terrazas, T. (2021). "A new Oligocene-Miocene tree from Panama and historical Anacardium migration patterns". PLOS ONE. 16 (6): e0250721. Bibcode:2021PLoSO..1650721R. doi:10.1371/journal.pone.0250721. PMC 8171895. PMID 34077439.
  112. ^ Soomro, N.; Mangi, J.; Panhwer, M.; Jatoi, G.; Khuhro, S.; Khokhar, Q.; Khan, S.; Mengal, A.; Shaikh, N. (2021). "Anatomical characteristics of fossil wood collected from the Manchar Formation (Miocene), Thano Bula Khan, Sindh, Pakistan". Italian Botanist. 11: 1–8. doi:10.3897/italianbotanist.11.60344. S2CID 233274837.
  113. ^ Liu, W.-Q.; Xu, S.-L.; Fu, Q.-Y.; Quan, C. L.; Jin, J.-H. (2021). "Late Oligocene Melia (Meliaceae) from the Nanning Basin of South China and it's biogeographical implication". Journal of Palaeogeography. 10 (1): Article number 16. Bibcode:2021JPalg..10...16L. doi:10.1186/s42501-021-00097-x. S2CID 235690851.
  114. ^ Huang, L.-L.; Jin, J.-H.; Quan, C.; Oskolski, A. A. (2021). "Earliest fossil record of the genus Tetradium (Rutaceae) in Asia: implications for its evolution and palaeoecology". Papers in Palaeontology. 7 (4): 2065–2074. doi:10.1002/spp2.1394. S2CID 237688959.
  115. ^ Huang, L.-L.; Jin, J.-H.; Quan, C.; Oskolski, A. A. (2021). "New occurrences of Altingiaceae fossil woods from the Miocene and upper Pleistocene of South China with phytogeographic implications". Journal of Palaeogeography. in press. doi:10.1016/j.jop.2021.11.001 (inactive 2021-12-24).CS1 maint: DOI inactive as of December 2021 (link)
  116. ^ Kajita, Y.; Suzuki, M. H.; Nishida, H. (2021). "A Multicarpellary Apocarpous Gynoecium from the Late Cretaceous (Coniacian–Santonian) of the Upper Yezo Group of Obira, Hokkaido, Japan: Obirafructus kokubunii gen. & sp. nov". Acta Phytotaxonomica et Geobotanica. 72 (1): 1–21. doi:10.18942/apg.202009.
  117. ^ Lai, Y.; Gandolfo, M. A.; Crepet, W. L.; Nixon, K. C. (2021). "Paleoaltingia gen. nov., a new genus of Altingiaceae from the Late Cretaceous of New Jersey". American Journal of Botany. 108 (3): 461–471. doi:10.1002/ajb2.1618. PMID 33660257. S2CID 232115011.
  118. ^ Smith, S. Y.; Kapgate, D. K.; Robinson, S.; Srivastava, R.; Benedict, J. C.; Manchester, S. R. (2021). "Fossil fruits and seeds of Zingiberales from the Late Cretaceous–early Cenozoic Deccan Intertrappean Beds of India". International Journal of Plant Sciences. 182 (2): 91–108. doi:10.1086/711474. S2CID 231875495.
  119. ^ Golovneva, L.; Bugdaeva, E.; Volynets, E.; Sun, Y.; Zolina, A. (2021). "Angiosperm diversification in the Early Cretaceous of Primorye, Far East of Russia". Fossil Imprint. 77 (2): 231–255. doi:10.37520/fi.2021.017.
  120. ^ Pessoa, E. M.; Ribeiro, A. C.; Jud, N. A. (2021). "A eudicot leaf from the Lower Cretaceous (Aptian, Araripe Basin) Crato Konservat-Lagerstätte". American Journal of Botany. 108 (10): 2055–2065. doi:10.1002/ajb2.1751. PMID 34647319. S2CID 238858698.
  121. ^ Sonkusare, H.; Samant, B.; Mohabey, D. M. (2021). "Palynoassemblage from intertrappean sediments of Satpura Group, Betul district, Madhya Pradesh: implications in understanding age and palaeoclimate". Journal of the Palaeontological Society of India. 66 (1): 35–54.
  122. ^ Cui, D.-F.; Hou, Y.; Yin, P.; Wang, X. (2021). "A Jurassic flower bud from the Jurassic of China". In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. Geological Society, London, Special Publications. The Geological Society of London. doi:10.1144/SP521-2021-122. S2CID 244737990.
  123. ^ Du, B.; Zhang, M.; Sun, B.; Li, A.; Zhang, J.; Yan, D.; Xie, S.; Wu, J. (2021). "An Exceptionally Well-Preserved Herbaceous Eudicot from the Early Cretaceous (late Aptian-early Albian) of Northwest China". National Science Review. 8 (12). doi:10.1093/nsr/nwab084.
  124. ^ Hernández, J. A. R. (2021). "Nigericolpites: a replacement name for the illegitimate Maastrichtian magnoliopsid pollen genus Clavatricolpites Hoeken-Klink. (Angiospermae: Magnoliopsida)". Grana. 60 (5): 370–371. doi:10.1080/00173134.2020.1827025. S2CID 234286062.
  125. ^ Durieux, T.; Lopez, M. A.; Bronson, A. W.; Tomescu, A. M. F. (2021). "A new phylogeny of the cladoxylopsid plexus: contribution of an early cladoxylopsid from the Lower Devonian (Emsian) of Quebec". American Journal of Botany. 108 (10): 2066–2095. doi:10.1002/ajb2.1752. PMID 34664712. S2CID 239028044.
  126. ^ Kraft, P.; Kvaček, Z. (2021). "Baragwanathia brevifolioides, a nomen novum for B. brevifolia P.Kraft et Kvaček, 2017". Fossil Imprint. 77 (1): 53–54. doi:10.37520/fi.2021.006. S2CID 245034157.
  127. ^ Ivanov, D.; Belkinova, D. (2021). "Closterium mosbruggeri sp. nov.: a new fossil species from the middle Miocene of Northwest Bulgaria". Palaeobiodiversity and Palaeoenvironments. 101 (1): 69–74. doi:10.1007/s12549-020-00476-7. S2CID 231859320.
  128. ^ a b Harris, C.; Gess, R. W.; Prestianni, C.; Bamford, M. K. (2021). "A Late Devonian refugium for Colpodexylon (Lycopsida) at high latitude". Review of Palaeobotany and Palynology. 293: Article 104481. doi:10.1016/j.revpalbo.2021.104481.
  129. ^ a b c Šimůnek, Z.; Lojka, R. (2021). "Carboniferous cuticles from the Lubná coal seam (Kladno Formation, Kladno-Rakovník Basin, Czech Republic)". Palaeontographica Abteilung B. 303 (4–6): 77–117. doi:10.1127/palb/2021/0076. S2CID 244561451.
  130. ^ Bippus, A. C.; Rothwell, G. W.; Stockey, R. A. (2021). "Cynodontium luthii sp. nov.: a permineralized moss gametophyte from the Late Cretaceous of the North Slope of Alaska". American Journal of Botany. 108 (3): 495–504. doi:10.1002/ajb2.1617. PMID 33650114. S2CID 232091615.
  131. ^ Manchester, S. R.; Zhang, X.; Hotton, C. L.; Wing, S. L.; Crane, P. R. (2021). "Distinctive quadrangular seed-bearing structures of gnetalean affinity from the Late Jurassic Morrison Formation of Utah, USA". Journal of Systematic Palaeontology. 19 (10): 743–760. doi:10.1080/14772019.2021.1968522. S2CID 239021014.
  132. ^ Barattolo, F.; Romano, R.; Conrad, M. (2021). "Evidence of external gametophores in puzzling Late Triassic–Early Jurassic dasycladalean green algae". Acta Palaeontologica Polonica. 66 (4): 901–919. doi:10.4202/app.00883.2021.
  133. ^ Barattolo, F.; Bucur, I. I.; Marian, A. V. (2021). "Deciphering voids in Dasycladales, the case of Dragastanella transylvanica, a new Lower Cretaceous triploporellacean genus and species from Romania". Journal of Paleontology. 95 (5): 889–905. doi:10.1017/jpa.2021.40. S2CID 236346831.
  134. ^ a b c Gess, R. W.; Prestianni, C. (2021). "An early Devonian flora from the Baviaanskloof Formation (Table Mountain Group) of South Africa". Scientific Reports. 11 (1): Article number 11859. Bibcode:2021NatSR..1111859G. doi:10.1038/s41598-021-90180-z. PMC 8178408. PMID 34088916.
  135. ^ Gess, R. W.; Prestianni, C. (2021). "Flabellopteris lococannensis gen. et sp. nov.: A new fern-like plant from the Famennian of South Africa". Review of Palaeobotany and Palynology. 297: Article 104585. doi:10.1016/j.revpalbo.2021.104585. S2CID 245209478.
  136. ^ Li, Y.; Wang, Y.-D.; Feldberg, K.; Wang, Q.; Yang, X.-J. (2021). "A new leafy liverwort of Frullania (Frullaniaceae, Porellales) from the mid-Cretaceous Kachin amber, Myanmar". Geological Journal. 56 (10): 5046–5057. doi:10.1002/gj.4222. S2CID 238795680.
  137. ^ a b c d Bouju, V.; Feldberg, K.; Kaasalainen, U.; Schäfer‐Verwimp, A.; Hedenäs, L.; Buck, W. R.; Wang, B.; Perrichot, V.; Schmidt, A. R. (2021). "Miocene Ethiopian amber: a new source of fossil cryptogams" (PDF). Journal of Systematics and Evolution. in press. doi:10.1111/jse.12796. S2CID 236586190.
  138. ^ Liu, B.-C.; Bai, J.; Wang, Y.; Yang, N.; Xu, H.-H. (2021). "On the discovery of Gilboaphyton (Lycopsida) from the Upper Devonian of East Junggar, Xinjiang, and its global distribution". Review of Palaeobotany and Palynology. 292: Article 104473. doi:10.1016/j.revpalbo.2021.104473.
  139. ^ Wang, D.-M.; Liu, L.; Zhou, Y.; Qin, M.; Meng, M.-C.; Guo, Y.; Xue, J.-Z. (2021). "Guazia, the earliest ovule without cupule but with unique integumentary lobes". National Science Review. in press. doi:10.1093/nsr/nwab196.
  140. ^ Na, Y.; Sun, C.; Wang, H.; Huang, T.; Bevitt, J.; Li, Y.; Li, T.; Zhao, Y.; Li, N. (2021). "Application of neutron tomography in studying new material of Ixostrobus Raciborski from the Middle Jurassic of Inner Mongolia, China". Geological Journal. 56 (9): 4618–4626. doi:10.1002/gj.4196. S2CID 237869542.
  141. ^ Toledo, S.; Bippus, A. C.; Atkinson, B. A.; Bronson, A. W.; Tomescu, A. M. F. (2021). "Taxon sampling and alternative hypotheses of relationships in the euphyllophyte plexus that gave rise to seed plants: insights from an Early Devonian radiatopsid". New Phytologist. 232 (2): 914–927. doi:10.1111/nph.17511. PMID 34031894. S2CID 235199240.
  142. ^ Meyer-Berthaud, B.; Decombeix, A.-L.; Blanchard, R. (2021). "Lycaugea edieae gen. et sp. nov., a Late Devonian lycopsid from New South Wales, Australia". International Journal of Plant Sciences. 182 (6): 418–429. doi:10.1086/714350. S2CID 233666757.
  143. ^ Bai, L.; Huang, P.; Yang, N.; Ju, W.; Liu, J.; Basinger, J. F.; Xu, H.; Xue, J. (2021). "A new Late Devonian flora from Sonid Zuoqi, Inner Mongolia, northeastern China". Journal of Paleontology. in press: 1–23. doi:10.1017/jpa.2021.93. S2CID 239867911.
  144. ^ De Sosa Tomas, A.; Martín-Closas, C.; Vallati, P.; Krause, M. (2021). "Early Cretaceous Mesochara-rich assemblages from central Patagonia, Argentina, predate the origin of homogenous Charoidean floras by about 30 million years". Cretaceous Research. 129: Article 105017. doi:10.1016/j.cretres.2021.105017. S2CID 239707025.
  145. ^ Sanjuan, J.; Vicente, A.; Pérez-Cano, J.; Stoica, M.; Martín-Closas, C. (2021). "Early Cretaceous charophytes from south Dobrogea (Romania). Biostratigraphy and palaeobiogeography". Cretaceous Research. 122: Article 104762. doi:10.1016/j.cretres.2021.104762. S2CID 234160551.
  146. ^ Chernomorets, O.; Sakala, J. (2021). "Mixoxylon australe gen. et sp. nov., a unique homoxylous wood with non-angiosperm affinity from the Lower Cretaceous of Antarctica (Albian, James Ross Island)". Antarctic Science. 33 (5): 493–501. Bibcode:2021AntSc..33..493C. doi:10.1017/S0954102021000389. S2CID 243834316.
  147. ^ Ghosh, A. K.; Chatterjee, R.; Pramanik, S.; Kar, R. (2021). "Radiation of Flora in the Early Triassic Succeeding the End Permian Crisis: Evidences from the Gondwana Supergroup of Peninsular India". In S. Banerjee; S. Sarkar (eds.). Mesozoic Stratigraphy of India. Society of Earth Scientists Series. Springer. pp. 87–113. doi:10.1007/978-3-030-71370-6_3. ISBN 978-3-030-71369-0. S2CID 243201506.
  148. ^ Bonacorsi, N. K.; Gensel, P. G.; Hueber, F. M.; Leslie, A. B. (2021). "Omniastrobus gen. nov., an Emsian plant with implications for the evolution of heterospory in the Early Devonian". International Journal of Plant Sciences. 182 (3): 198–209. doi:10.1086/712356. S2CID 232050463.
  149. ^ Martín-Closas, C.; Segura-Altés, R.; Pérez-Cano, J.; Bover-Arnal, T.; Sanjuan, J. (2021). "Palaeonitella trifurcata n. sp., a cortoid-building charophyte from the Lower Cretaceous of Catalonia". Review of Palaeobotany and Palynology. 295: Article 104523. doi:10.1016/j.revpalbo.2021.104523.
  150. ^ Wang, J.; Hilton, J.; Pfefferkorn, H. W.; Wang, S.; Zhang, Y.; Bek, J.; Pšenička, J.; Seyfullah, L. J.; Dilcher, D. (2021). "Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation". Proceedings of the National Academy of Sciences of the United States of America. 118 (11): e2013442118. doi:10.1073/pnas.2013442118. PMC 7980368. PMID 33836571.
  151. ^ Foraponova, T. S.; Karasev, E. V. (2021). "Systematic problems of pollen organs of the genus Permotheca Zalessky from the Permian of Subangara". Paleontological Journal. 55 (6): 691–706. doi:10.1134/S0031030121060058. S2CID 245010226.
  152. ^ Feldberg, K.; Schäfer-Verwimp, A.; Renner, M. A. M.; von Konrat, M.; Bechteler, J.; Müller, P.; Wang, Y.-D.; Schneider, H.; Schmidt, A. R. (2021). "Liverworts from Cretaceous amber". Cretaceous Research. 128: Article 104987. doi:10.1016/j.cretres.2021.104987. S2CID 238782100.
  153. ^ Oukassou, M.; Naugolnykh, S. V. (2021). "Rehamnia (Lycopodiophyta), a new enigmatic Late Devonian plant from Morocco". Journal of African Earth Sciences. 182: Article 104274. Bibcode:2021JAfES.18204274O. doi:10.1016/j.jafrearsci.2021.104274.
  154. ^ Han, L.; Yang, T.; Wang, H.-J.; Cai, J.-H.; Liang, W.-Y.; Bao, L.; Chen, H.-Y.; Zhang, L.; Li, W.-J.; Yan, D.-F. (2021). "Liverwort fossils from the Late Triassic of Baiyin, Gansu, and their geological significance". Palaeoworld. in press. doi:10.1016/j.palwor.2021.09.009. S2CID 242525785.
  155. ^ Friis, E. M.; Crane, P. R.; Pedersen, K. R. (2021). "Microsporangiophores from the Early Cretaceous (Berriasian) of Bornholm, Denmark, with comments on a pre-angiosperm xerophytic flora". Review of Palaeobotany and Palynology. 293: Article 104487. doi:10.1016/j.revpalbo.2021.104487.
  156. ^ Flores Barragan, M. A.; Velasco de León, M. P.; Ortega Chavez, E. (2021). "New genus for megaphyllous leaves from the Upper Paleozoic of Mexico Velascoa pueblensis gen. nov". Journal of South American Earth Sciences. 110: Article 103408. Bibcode:2021JSAES.11003408F. doi:10.1016/j.jsames.2021.103408.
  157. ^ Vachard, D.; Bucur, I. I.; Munnecke, A. (2021). "Vitinellopsis nov. gen., a new calcareous alga (Chlorophyta, Bryopsidales) from the Silurian of Gotland (Sweden), and the tribe Vitinelleae nov. nom". Geobios. in press. doi:10.1016/j.geobios.2021.10.001. S2CID 244766381.
  158. ^ Gossmann, R.; Poschmann, M. J.; Giesen, P.; Schultka, S. (2021). "A stratigraphically significant new zosterophyllopsid from the Rhenish Lower Devonian (W Germany)". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-021-00509-9. S2CID 238479823.
  159. ^ Strother, P. K.; Foster, C. (2021). "A fossil record of land plant origins from charophyte algae". Science. 373 (6556): 792–796. Bibcode:2021Sci...373..792S. doi:10.1126/science.abj2927. PMID 34385396. S2CID 236991210.
  160. ^ Leslie, A. B.; Simpson, C.; Mander, L. (2021). "Reproductive innovations and pulsed rise in plant complexity" (PDF). Science. 373 (6561): 1368–1372. Bibcode:2021Sci...373.1368L. doi:10.1126/science.abi6984. PMID 34529461. S2CID 237547326.
  161. ^ Pšenička, J.; Bek, J.; Frýda, J.; Žárský, V.; Uhlířová, M.; Štorch, P. (2021). "Dynamics of Silurian Plants as Response to Climate Changes". Life. 11 (9): Article 906. doi:10.3390/life11090906. PMC 8470493. PMID 34575055.
  162. ^ Hetherington, A. J.; Bridson, S. L.; Jones, A. L.; Hass, H.; Kerp, H.; Dolan, L. (2021). "An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert". eLife. 10: e69447. doi:10.7554/eLife.69447. PMC 8384418. PMID 34425940.
  163. ^ Matthaeus, W. J.; Macarewich, S. I.; Richey, J. D.; Wilson, J. P.; McElwain, J. C.; Montañez, I. P.; DiMichele, W. A.; Hren, M. T.; Poulsen, C. J.; White, J. D. (2021). "Freeze tolerance influenced forest cover and hydrology during the Pennsylvanian". Proceedings of the National Academy of Sciences of the United States of America. 118 (42): e2025227118. Bibcode:2021PNAS..11825227M. doi:10.1073/pnas.2025227118. PMC 8594576. PMID 34635589.
  164. ^ Zhou, Y.; Wang, D.-M.; Liu, L.; Huang, P. (2021). "The morphometric of lycopsid sporophylls and the evaluation of their dispersal potential: an example from the Upper Devonian of Zhejiang Province, China". BMC Ecology and Evolution. 21 (1): Article number 198. doi:10.1186/s12862-021-01933-3. PMC 8565055. PMID 34732141.
  165. ^ Chen, B.-Y.; Wan, M.-L.; Zhou, W.-M.; Wang, S.-J.; Wang, J. (2021). "Anatomy of Stigmaria asiatica Jongmans et Gothan from the Asselian (lowermost Permian) of Wuda Coalfield, Inner Mongolia, North China". Palaeoworld. in press. doi:10.1016/j.palwor.2021.05.001. S2CID 236366665.
  166. ^ D'Antonio, M. P.; Boyce, C. K.; Zhou, W.-M.; Pfefferkorn, H. W.; Wang, J. (2021). "Primary tissues dominated ground-level trunk diameter in Sigillaria: evidence from the Wuda Tuff, Inner Mongolia". Journal of the Geological Society. in press. doi:10.1144/jgs2021-021. S2CID 238701484.
  167. ^ Looy, C. V.; van Konijnenburg-van Cittert, J. H. A.; Duijnstee, I. A. P. (2021). "Proliferation of Isoëtalean Lycophytes During the Permo-Triassic Biotic Crises: A Proxy for the State of the Terrestrial Biosphere". Frontiers in Earth Science. 9: Article 615370. Bibcode:2021FrEaS...9...55L. doi:10.3389/feart.2021.615370.
  168. ^ Kerp, H.; Blomenkemper, P.; Hamad, A. A.; Bomfleur, B. (2021). "Saportaea Fontaine et White 1880 – An enigmatic, long-ranging, widely distributed but rare type of late Palaeozoic and early Mesozoic foliage". Review of Palaeobotany and Palynology. 296: Article 104542. doi:10.1016/j.revpalbo.2021.104542. S2CID 244595344.
  169. ^ Moreau, J.-D.; Philippe, M.; Néraudeau, D.; Dépré, E.; Le Couls, M.; Fernandez, V.; Beurel, S. (2021). "Paleohistology of the Cretaceous resin-producing conifer Geinitzia reichenbachii using X-ray synchrotron microtomography". American Journal of Botany. 108 (9): 1745–1760. doi:10.1002/ajb2.1722. PMID 34495546. S2CID 237441544.
  170. ^ Liu, J.; Lindstrom, A. J.; Marler, T. E.; Gong, X. (2021). "Not that young: combining plastid phylogenomic, plate tectonic and fossil evidence indicates a Palaeogene diversification of Cycadaceae". Annals of Botany. in press. doi:10.1093/aob/mcab118. PMID 34520529.
  171. ^ Shi, G.; Herrera, F.; Herendeen, P. S.; Clark, E. G.; Crane, P. R. (2021). "Mesozoic cupules and the origin of the angiosperm second integument". Nature. 594 (7862): 223–226. Bibcode:2021Natur.594..223S. doi:10.1038/s41586-021-03598-w. PMID 34040260. S2CID 235217720.
  172. ^ Wilson, P. K.; Wilson Mantilla, G. P.; Strӧmberg, C. A. E. (2021). "Seafood Salad: A diverse latest Cretaceous flora from eastern Montana". Cretaceous Research. 121: Article 104734. doi:10.1016/j.cretres.2020.104734. S2CID 233543523.
  173. ^ Silvestro, D.; Bacon, C. D.; Dong, W.; Zhang, Q.; Donoghue, P. C. J.; Antonelli, A.; Xing, Y. (2021). "Fossil data support a pre-Cretaceous origin of flowering plants" (PDF). Nature Ecology & Evolution. 5 (4): 449–457. doi:10.1038/s41559-020-01387-8. hdl:1983/11314812-19f6-4cbc-84a2-28791cb16d53. PMID 33510432. S2CID 231763334.
  174. ^ Xiao, L.; Labandeira, C.; Dilcher, D.; Ren, D. (2021). "Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination". Proceedings of the Royal Society B: Biological Sciences. 288 (1953): Article ID 20210320. doi:10.1098/rspb.2021.0320. PMC 8207559. PMID 34132112.
  175. ^ Prebble, J. G.; Kennedy, E. M.; Reichgelt, T.; Clowes, C.; Womack, T.; Mildenhall, D. C.; Raine, J. I.; Crouch, E. M. (2021). "A 100 million year composite pollen record from New Zealand shows maximum angiosperm abundance delayed until Eocene". Palaeogeography, Palaeoclimatology, Palaeoecology. 566: Article 110207. Bibcode:2021PPP...566k0207P. doi:10.1016/j.palaeo.2020.110207. S2CID 233656482.
  176. ^ Wang, X.; Shih, C.; Liu, Z.-J.; Lin, L.; Singh, K. J. (2021). "Reconstructing the Callianthus plant – an early aquatic angiosperm from the Lower Cretaceous of China". Cretaceous Research. 128: Article 104983. doi:10.1016/j.cretres.2021.104983.
  177. ^ Liang, F.; Tian, N.; Sun, W.; Wu, Q.; Liu, B.; Wang, H. (2021). "Epidermal features of the floating leaves of Quereuxia angulata (Newberry) Krištofovič, an aquatic angiosperm from the Upper Cretaceous of Northeast China". Cretaceous Research. 125: Article 104835. doi:10.1016/j.cretres.2021.104835.
  178. ^ Carvalho, M. R; Jaramillo, C.; de la Parra, F.; Caballero-Rodríguez, D.; Herrera, F.; Wing, S.; Turner, B. L.; D’Apolito, C.; Romero-Báez, M.; Narváez, P.; Martínez, C.; Gutierrez, M.; Labandeira, C.; Bayona, G.; Rueda, M.; Paez-Reyes, M.; Cárdenas, D.; Duque, Á.; Crowley, J. L.; Santos, C.; Silvestro, D. (2021). "Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests". Science. 372 (6537): 63–68. Bibcode:2021Sci...372...63C. doi:10.1126/science.abf1969. PMID 33795451. S2CID 232484243.
  179. ^ Lim, J. Y.; Huang, H.; Farnsworth, A.; Lunt, D. J.; Baker, W. J.; Morley, R. J.; Kissling, W. D.; Hoorn, C. (2021). "The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests". Global Ecology and Biogeography. in press. doi:10.1111/geb.13436. S2CID 245284265.
  180. ^ Wheeler, E. A.; Baas, P.; Manchester, S. R. (2021). "Wood Anatomy of Modern and Fossil Fagales in Relation to Phylogenetic Hypotheses, Familial Classification, and Patterns of Character Evolution". International Journal of Plant Sciences. 183 (1): 61–86. doi:10.1086/717328. S2CID 244081754.
  181. ^ Fernández, D. A.; Palazzesi, L.; González Estebenet, M. S.; Tellería, M. C.; Barreda, V. D. (2021). "Impact of mid Eocene greenhouse warming on America's southernmost floras". Communications Biology. 4 (1): Article number 176. doi:10.1038/s42003-021-01701-5. PMC 7873257. PMID 33564110.
  182. ^ Bellosi, E.; Genise, J. F.; Zucol, A.; Bond, M.; Kramarz, A.; Sánchez, M. V.; Krause, J. M. (2021). "Diverse evidence for grasslands since the Eocene in Patagonia". Journal of South American Earth Sciences. 108: Article 103357. Bibcode:2021JSAES.10803357B. doi:10.1016/j.jsames.2021.103357. S2CID 235567426.
  183. ^ Casas-Gallego, M.; Postigo-Mijarra, J. M.; Rivas-Carballo, M. R.; Valle-Hernández, M. F.; Morín-de Pablos, J.; Barrón, E. (2021). "Early evidence of continental aridity and open-habitat grasslands in Europe as revealed by the Middle Miocene microflora of the Madrid Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 581: Article 110603. Bibcode:2021PPP...581k0603C. doi:10.1016/j.palaeo.2021.110603. S2CID 238847370.
  184. ^ Andrieu-Ponel, V.; Rochette, P.; Demory, F.; Alçiçek, H.; Boulbes, N.; Bourlès, D.; Helvacı, C.; Lebatard, A.-E.; Mayda, S.; Michaud, H.; Moigne, A.-M.; Nomade, S.; Perrin, M.; Ponel, P.; Rambeau, C.; Vialet, A.; Gambin, B.; Alçiçek, M. C. (2021). "Continuous presence of proto-cereals in Anatolia since 2.3 Ma, and their possible co-evolution with large herbivores and hominins". Scientific Reports. 11 (1): Article number 8914. Bibcode:2021NatSR..11.8914A. doi:10.1038/s41598-021-86423-8. PMC 8076274. PMID 33903602.
  185. ^ Lindström, S. (2021). "Two-phased Mass Rarity and Extinction in Land Plants During the End-Triassic Climate Crisis". Frontiers in Earth Science. 9: Article 780343. doi:10.3389/feart.2021.780343.
  186. ^ Donders, T.; Panagiotopoulos, K.; Koutsodendris, A.; Bertini, A.; Mercuri, A. M.; Masi, A.; Combourieu-Nebout, N.; Joannin, S.; Kouli, K.; Kousis, I.; Peyron, O.; Torri, P.; Florenzano, A.; Francke, A.; Wagner, B.; Sadori, L. (2021). "1.36 million years of Mediterranean forest refugium dynamics in response to glacial–interglacial cycle strength". Proceedings of the National Academy of Sciences of the United States of America. 118 (34): e2026111118. Bibcode:2021PNAS..11826111D. doi:10.1073/pnas.2026111118. PMC 8403972. PMID 34400496.
  187. ^ Crump, S. E.; Fréchette, B.; Power, M.; Cutler, S.; de Wet, G.; Raynolds, M. K.; Raberg, J. H.; Briner, J. P.; Thomas, E. K.; Sepúlveda, J.; Shapiro, B.; Bunce, M.; Miller, G. H. (2021). "Ancient plant DNA reveals High Arctic greening during the Last Interglacial". Proceedings of the National Academy of Sciences of the United States of America. 118 (13): e2019069118. Bibcode:2021PNAS..11819069C. doi:10.1073/pnas.2019069118. PMC 8020792. PMID 33723011.
Retrieved from ""