Agua de la Piedra Formation

From Wikipedia, the free encyclopedia
Agua de la Piedra Formation
Stratigraphic range: Late Oligocene (Deseadan)
~26–23 Ma
Quebrada Fiera view and map.jpg
View of the formation at Quebrada Fiera, southern Mendoza
TypeGeological formation
Unit ofMalargüe Group
Sub-units"Rodados Lustrosos" level
Underliesalluvium
Overlies
Thickness37 metres (121 ft) (tuffs)
Lithology
PrimaryTuff
OtherPaleosols
Location
Coordinates36°36′S 69°42′W / 36.6°S 69.7°W / -36.6; -69.7Coordinates: 36°36′S 69°42′W / 36.6°S 69.7°W / -36.6; -69.7
Approximate paleocoordinates37°48′S 62°54′W / 37.8°S 62.9°W / -37.8; -62.9
Regionsouthern Mendoza Province
Country Argentina
Extentsouthernmost Precordillera
northernmost Neuquén Basin
Type section
Named byGorroño et al.
LocationQuebrada Fiera, Malargüe
Year defined1979
Coordinates36°33′13.3″S 69°42′3.5″W / 36.553694°S 69.700972°W / -36.553694; -69.700972
RegionMendoza Province
CountryArgentina
Thickness at type section37 metres (121 ft) (tuffs)
Agua de la Piedra Formation is located in Argentina
Agua de la Piedra Formation
Agua de la Piedra Formation (Argentina)

The Agua de la Piedra Formation (FAP, Spanish names include Estratos de Agua de la Piedra and Complejo Volcano-sedimentario del Terciario inferior)[1] is a Late Oligocene (Deseadan in the SALMA classification) geologic formation of the Malargüe Group that crops out in the southernmost Precordillera and northernmost Neuquén Basin in southern Mendoza Province, Argentina.[2]

The strictly terrestrial tuffs and paleosols of the formation, geologically belonging to Patagonia, have provided a wealth of mammal fossils of various groups at Quebrada Fiera, including Mendozahippus fierensis, Pyrotherium, and . Terror birds reminiscent of the terror bird Andrewsornis and indeterminate remains of the phorusrhacid family have found in conjunction with the mammals.

Regional geology[]

The Agua de la Piedra is geologically part of the Neuquén Basin, Argentina's most prolific onshore petroleum producing basin of northwestern Patagonia, and crops out in the geographical feature of the Andean orogeny; the Argentinian Precordillera of the higher Andes in the hinterland. The Malargüe Group, of which the Agua de la Piedra Formation is the uppermost unit, hosts among the most spectacular dinosaur fossils and nesting sites in the Allen Formation, the lowermost stratigraphic unit of the group.

The Jagüel Formation, overlying the Allen Formation, hosts the Cretaceous–Paleogene boundary and has provided fossils of marine reptiles including mosasaurs[3] and the marine turtle Euclastes meridionalis. The Roca Formation, overlying the Jagüel Formation shows evidence of Atlantic waters depositing the evaporites, claystones and limestones of the formation.[4][5]

The Neuquén Basin started forming in the latest Jurassic as one of the rift basins resulting from the break-up of Pangea. While the earlier formations in the basin are mostly distal terrestrial in nature, the Agua de la Piedra Formation is a unique combination of purely terrestrial influence (paleosols) with the early Andean volcanism in the form of tuffs.

Oligocene South America[]

Late Eocene-Early Oligocene paleogeography (35 Ma)

Climate[]

Global cooling occurred during the Oligocene
Eocene-Oligocene circum-Antarctic oceanic changes

Oligocene South America differed quite substantially from the Eocene period preceding it. Isolated from Gondwana for 70 million years, the continent had developed widespread lush forests with their own specific faunas. The climate drastically cooled at the Eocene-Oligocene boundary with global cooling as a result of the formation of the Antarctic Ocean current. The South American landscape became more arid than in the Eocene with ongoing volcanism related to the Andean orogeny affecting the local climates.

Oligocene fauna[]

The Oligocene of South America is characterized by the arrival of the first monkeys, possibly rafting from Africa, which in the Oligocene was significantly removed from South America. The first rodents had arrived to the island continent in the Late Eocene before,[6] perhaps using similar methods of transoceanic transport. The rodents of South America diversified in the Oligocene. Cabeza Blanca, where the outcrops, has provided the richest and most diverse Oligocene fauna of South America.[7]

The cooler Oligocene climate led to the wide-spread extension of savanna and other grassland biomes. In the Early Oligocene, these rodents inhabited open and arid landscapes with wind-blown dust and grasslands environments.[8]

Monkeys and rodents[]

The oldest confirmed New World monkey fossils stem from the Deseadan formations in presently Andean Bolivia (the approximately 1,000 grams (2.2 lb) weighing Branisella boliviana and half the size of Branisella) and the 2,000 g (4.4 lb) heavy Canaanimico from the of Amazonian Peru.[9]

The rodents had arrived in the Late Eocene and diversified greatly during the Deseadan following the appearance of with species A. frassinettii and A. termasi in the Tinguirirican (Abanico Formation; Tinguiririca fauna). Caviomorphs arrived in Patagonia during the latest Eocene or early Oligocene, and by the Late Oligocene they were highly diversified, with representatives of the four main lineages. A great morphological disparity, at least in tooth morphology, was then acquired mainly by the development of hypsodonty in several lineages. The early evolution of each of the major clades was complex, especially for and . The first stages of the evolution of cavioids are more obscure because they are recognized through the relatively derived Deseadan species of Cavioidea.[10]

The Oligocene (Tinguirirican and Deseadan SALMAs plus La Cantera fauna) has a rich record of caviomorphs showing a greater morphological disparity than older faunas. Representatives of the four superfamilies, with the archetypal dental features that characterize species of the subsequent SALMAs, can be clearly recognized, at least since the Deseadan SALMA. Although a few genera (e.g., Andemys, ) cannot be assigned with certainty to any supra generic taxa. The were likely a group of austral differentiation. The first representatives, the Deseadan , and ,[11] attest to its differentiation into several lineages.[12]

Oligocene volcanism[]

Early Andean volcanism in the Southern Cone of South America dating to the Oligocene has been found in:

Description[]

The formation comprises the "Rodados Lustrosos" level, formed by clastic heterogeneous conglomerates in a silty matrix, considered as the stratigraphic evidence of the Pehuenche orogenic phase of the Andean orogeny, followed by uniform sequences, variable in thickness, of whitish-ocher tuffaceous paleosols with concretions and whitish-gray tuffs with intercalations of pyroclastic deposits.[19]

The upper part of the Agua de la Piedra Formation consists of 37 metres (121 ft) of white-grayish tuffs and tobaceous paleosols, with laminated or massive parallel stratification constitute the fossiliferous level of Quebrada Fiera.[20] The formation overlies the .[21]

Depositional environment[]

The studied profiles of the Agua de la Piedra Formation show large lateral lithological varieties, typical of alluvial fan depositional setings. The climate during deposition has been estimated to be semi-arid and the differential thicknesses of facies associations within the Agua de la Piedra Formation may represent the infill of minibasins in the forming foreland of the Andes. Sedimentary loading can enhance the effect of tectonic forces in foreland basins. The variety in volcanic fragments and composition indicates local ash fall caused by contemporaneous volcanism in the area of deposition.[22]

2017 research on the Deseadan fauna (late Oligocene) from Quebrada Fiera, south of Mendoza Province, Argentina, evidences a rich mammal assemblage that shows the existence of common elements with Deseadan faunal associations of Patagonia and those of lower latitudes such as Salla, Bolivia, as well as endemic taxa of different groups.[23]

Endemism refers to Notohippidae (Mendozahippus fierensis), Leontiniidae (Gualta cuyana), Homalodotheriidae (Asmodeus petrasnerus) and Metatheria (Fieratherium sorex); to these mammals a new terrestrial snail has been added in 2016.[24]

Faunal data published in 2019 confirm the Deseadan age, but as per 2020, absolute dating is lacking for Quebrada Fiera.[19]

Paleontological significance[]

Quebrada Fiera[]

The Quebrada Fiera site is situated in the Malargüe Department,[25] southern Mendoza Province, Argentina, in the foothills of the Andes Range. The fossiliferous levels are located at around

 WikiMiniAtlas
36°33′13.3″S 69°42′3.5″W / 36.553694°S 69.700972°W / -36.553694; -69.700972 at 1,300 to 1,406 metres (4,265 to 4,613 ft) elevation. The site was discovered during a geological prospection carried out by Yacimientos Petrolíferos Fiscales (YPF) in the late 1970s (Gorroño et al., 1979). Later on, other fossil bearing levels were found at the southern side of the ravine,[26] located at around
 WikiMiniAtlas
36°33′26″S 69°41′35″W / 36.55722°S 69.69306°W / -36.55722; -69.69306
, 1,316 metres (4,318 ft) elevation.[19]

The site is one of five recognized fossiliferous sites in Mendoza Province, with Divisadero Largo, where the Santacrucian is found, Huaquerías, defining the Huayquerian in the Huayquerías Formation, the of central Mendoza and the and in the north of the province.[21]

The geological characterization and the preliminary faunal list were published by Gorroño et al. (1979). The faunal assemblage was then assigned to the Late Oligocene (Deseadan SALMA) based on the presence of two typical representatives of the Deseadean fauna of Patagonia; Pyrotherium Ameghino 1888 and Ameghino 1897,[19] both also found in the Puesto Almendra member of the .[27]

The species epithet Mendozahippus fierensis and genus refer to Quebrada Fiera.[25][26][28][29][30]

Fossil content[]

The formation has provided fossils of:[2]

Group Clade Taxa Site Images Notes
Ungulates Macraucheniidae Quebrada Fiera North
Coniopternium andinum fossils - Agua de la Piedra Formation.jpg
Proterotheriidae Quebrada Fiera North
Cf. Lambdaconus suinus - Agua de la Piedra Formation.jpg
Pyrotherium romeroi Quebrada Fiera North
Pyrotherium NT small.jpg
Pyrotherium sp. Quebrada Fiera South
Litopterna Litopterna indet. Quebrada Fiera North
Thoatheriumknight.jpg
Cingulata Dasypodidae Quebrada Fiera North
Quebrada Fiera North
Quebrada Fiera North
Xenarthra Glyptodontidae Glyptodontidae indet. Quebrada Fiera North
Doedicurus and Glyptodon.jpg
Megalonychidae ?Megalonychidae indet. Quebrada Fiera North
Notoungulata Notohippidae Mendozahippus fierensis Quebrada Fiera South
Quebrada Fiera North
Notohippidae indet. Quebrada Fiera North
Pyrotherium romeroi e.jpg
Archaeohyracidae Quebrada Fiera North
Archaeohyrax suniensis Quebrada Fiera North
Hegetotheriidae Quebrada Fiera North
Quebrada Fiera North
Prohegetotherium malalhuense Quebrada Fiera North
P. schiaffinoi Quebrada Fiera North
P. cf. sculptum Quebrada Fiera North
Prohegetotherium sp. Quebrada Fiera North
Quebrada Fiera North
Homalodotheriidae Quebrada Fiera North
Interatheriidae Quebrada Fiera North
Quebrada Fiera North
Interatheriidae indet. Quebrada Fiera South
Leontiniidae Quebrada Fiera North
Mesotheriidae Quebrada Fiera North
Toxodontidae Quebrada Fiera North
Proadinotherium from Quebrada Fiera.jpg
Toxodontidae indet. Quebrada Fiera North
Mixotoxodon.jpg
Rodents Acaremyidae indet. Quebrada Fiera North
Sparassodonta Borhyaenidae Pharsophorus sp. Quebrada Fiera North
Proborhyaenidae Quebrada Fiera North
Theriiformes Quebrada Fiera North
Birds Phorusrhacidae cf. Andrewsornis sp. Quebrada Fiera North
Andrewsornis skull holotype.jpg
Phorusrhacidae indet. Quebrada Fiera South
Terror birds and Gastornis height comparison.jpg
Invertebrates Gastropods Gastropoda indet. Quebrada Fiera North

SALMA correlations[]

The Deseadan South American land mammal age (SALMA) is equivalent to the Arikareean in the North American land mammal age (NALMA) and the Harrisonian in the 2000 version of the classification. It overlaps with the Hsandagolian of Asia and the of Europe, the Waitakian and the of New Zealand.

Deseadan correlations in South America
Formation Orange ff8040 pog.svg Barzalosa Map
Basin Neuquén Austral Cuyo Deseado San Jorge Norte Moquegua
Agua de la Piedra Formation is located in South America
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation
Agua de la Piedra Formation (South America)
Country  Argentina  Bolivia  Uruguay  Peru  Colombia  Brazil  Panama
Archaeohyrax Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg
Prohegetotherium Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg
Pyrotherium Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg
Pharsophorus Orange ff8040 pog.svg Orange ff8040 pog.svg
Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg
Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg
Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg
Orange ff8040 pog.svg Orange ff8040 pog.svg Orange ff8040 pog.svg
Andrewsornis Orange ff8040 pog.svg Orange ff8040 pog.svg
Terror birds Red pog.svg Red pog.svg Red pog.svg Red pog.svg Red pog.svg Red pog.svg Red pog.svg
Rodents Steel pog.svg Steel pog.svg Steel pog.svg Steel pog.svg Steel pog.svg Steel pog.svg Steel pog.svg Steel pog.svg Steel pog.svg
Reptiles SpringGreen pog.svg SpringGreen pog.svg SpringGreen pog.svg SpringGreen pog.svg SpringGreen pog.svg SpringGreen pog.svg SpringGreen pog.svg SpringGreen pog.svg SpringGreen pog.svg
Primates Brown pog.svg Brown pog.svg Brown pog.svg
Flora Green pog.svg Green pog.svg
Insects Blue pog.svg
Environments Alluvial Fluvial Eolian
Alluvial-fluvial
Fluvial Alluvial Fluvial-alluvial Fluvial Fluvio-lacustrine Alluvial-fluvial Lacustrine Fluvial
Pink ff0080 pog.svg Deseadan volcanoclastics

Orange ff8040 pog.svg Deseadan fauna

Dark Green 004040 pog.svg Deseadan flora
Volcanic Yes Yes Yes Yes Yes Yes

See also[]

References[]

  1. ^ Combina et al., 1994, p.418
  2. ^ a b Agua de la Piedra Formation in the Paleobiology Database
  3. ^ Hoja 3969-II Neuqúen, 2007
  4. ^ Archuby et al., 2016
  5. ^ Malamuián & Náñez, 2011
  6. ^ Vassallo & Antenucci, 2015, p.6
  7. ^ Vucetich et al., 2015, p.21
  8. ^ Ojeda et al., 2015, p.123
  9. ^ Silvestro et al., 2017, p.14
  10. ^ Vucetich et al., 2015, p.11
  11. ^ Vucetich et al., 2014, p.692
  12. ^ Vucetich et al., 2015, p.18
  13. ^ a b Elgueta et al., 2000
  14. ^ Alfaro & Gantz, 1997
  15. ^ Villablanca et al., 2003
  16. ^ Mella & Quiroz, 2010
  17. ^ García et al., 1999
  18. ^ Zeilinger et al., 2015
  19. ^ a b c d Schmidt et al., 2019, p.370
  20. ^ Cerdeño, 2012, p.378
  21. ^ a b Cerdeño, 2012, p.376
  22. ^ Combina et al., 1994, p.420
  23. ^ Hernández Pino et al., 2017, p.195
  24. ^ Miquel & Cerdeño, 2016
  25. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai Quebrada Fiera at Fossilworks.org
  26. ^ a b c d e f Quebrada Fiera South in the Paleobiology Database
  27. ^ Gran Blanca in the Paleobiology Database
  28. ^ Cerdeño & Reguero, 2015
  29. ^ a b Seoane & Cerdeño, 2014
  30. ^ Cerdeño & Vera, 2014a
  31. ^ Schmidt et al., 2019, p.371
  32. ^ Schmidt et al., 2019, p.375
  33. ^ Cerdeño & Vera, 2017
  34. ^ a b c Carlini et al., 2009
  35. ^ Cerdeño & Vera, 2010
  36. ^ Cerdeño & Vera, 2014b
  37. ^ a b Cerdeño et al., 2010
  38. ^ Vera et al., 2017
  39. ^ Seoane et al., 2019
  40. ^ Kramarz & Bond, 2017
  41. ^ Hernández Pino et al., 2017, p.206
  42. ^ Hernández Pino et al., 2017, p.201
  43. ^ Cerdeño, 2014
  44. ^ Hernández Pino et al., 2017, p.198
  45. ^ Hernández Pino et al., 2017, p.200
  46. ^ Forasiepi et al., 2014

Bibliography[]

General
Regional geology
  • Balgord, Elizabeth A. 2017. Triassic to Neogene evolution of the south-central Andean arc determined by detrital zircon U-Pb and Hf analysis of Neuquén Basin strata, central Argentina (34°S–40°S). Lithosphere 9. 453–462.
  • Archuby, Fernando; Leonardo Salgado; Soledad Brezina, and Ana Parras. 2016. Dos orillas, dos mundos: Paleontología del Alto Valle del río Negro. 7. 10–15.
  • Bellosi, Eduardo S., and J. Marcelo Krause. 2014. Onset of the Middle Eocene global cooling and expansion of open-vegetation habitats in central Patagonia. Andean Geology 41. 29–48. Accessed 2019-03-04.
  • Combina, Ana María, and Francisco Nullo. 2011. Ciclos tectónicos, volcánicos y sedimentarios del Cenozoico del sur de Mendoza-Argentina (35-37° S y 69° 30'W). Andean Geology 38. 198–218. Accessed 2018-09-11.
  • Malumián, Norberto, and Carolina Náñez. 2011. The Late Cretaceous–Cenozoic transgressions in Patagonia and the Fuegian Andes: foraminifera, palaeoecology, and palaeogeography. Biological Journal of the Linnean Society 103. 269–288. doi:10.1111/j.1095-8312.2011.01649.x
  • Rodríguez, María F.; Héctor A. Leanza, and Matías Salvarredy Aranguren. 2007. Hoja Geológica 3969-II - Neuquén, 32–35. Servicio Geológico Minero Argentino - Instituto de Geología y Recursos Minerales. ISSN 0328-2333
  • Ramos, Víctor A., and Suzanne Mahlburg Kay. 2006. Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35–39°S lat). 407. 1–17. Accessed 2018-09-06.
  • Combina, Ana María; Francisco Nullo; G. Stephens, and Paul Baldauf. 1994. Paleoambientes de la Formación Agua de la Piedra, Mendoza, Argentina, 418–424. 7° Congreo geológico Chileno. Accessed 2020-08-12.
Oligocene volcanism
Paleontology
New World monkeys
Terror birds
South American rodents

Regional correlations[]

Mariño Formation
Rancahué Formation
  • Vera, E.I. 2010. Oligocene ferns from the Rancahué Formation (Aluminé, Neuquén, Argentina): Cuyenopteris patagoniensis nov. gen., nov. sp. (Polypodiales: Blechnaceae/Dryopteridaceae) and Alsophilocaulis calveloi Menéndez emend. Vera (Cyatheales: Cyatheaceae). Geobios 43. 465–478.
  • Menéndez, C.A. 1961. Estípite petrificado de una nueva Cyatheaceae del Terciario de Neuquén. IX. 331–358.
Río Guillermo Formation
  • Vento, B.; M. A. Gandolfo; K. C. Nixon, and M. Prámparo. 2017. Paleofloristic assemblage from the Paleogene Río Guillermo Formation, Argentina: preliminary results of phylogenetic relationships of Nothofagus in South America. Historical Biology 29. 93–107.
Deseado Formation
Sarmiento Formation
Salla Formation
Lacayani fauna
Fray Bentos Formation
Moquegua Formation
Chambira Formation
Barzalosa Formation
  • Acosta, Jorge E.; Rafael Guatame; Juan Carlos Caicedo A., and Jorge Ignacio Cárdenas. 2002. Mapa Geológico de Colombia - Plancha 245 - Girardot - 1:100,000 - Memoria Explicativa, 1–92. INGEOMINAS.
  • Acosta, Jorge E., and Carlos E. Ulloa. 2001. Mapa Geológico de Colombia - Plancha 246 - Fusagasugá - 1:100,000 - Memoria Explicativa, 1–77. INGEOMINAS.
Tremembé Formation
Las Cascadas Formation
  • Rincón, A. F.; J. I. Bloch; C. Suárez; B. J. MacFadden, and C. A. . 2012. New floridatragulines (Mammalia, Camelidae) from the early Miocene Las Cascadas Formation, Panama. Journal of Vertebrate Paleontology 32. 456–475.

Further reading[]

  • Encinas, Alfonso; Folguera, Andrés; Bechis, Florencia; Finger, Kenneth L.; Zambrano, Patricio; Pérez, Felipe; Benarbé, Pablo; Tapia, Francisca; Riffo, Ricardo; Buatois, Luis; Orts, Darío; Nielsen, Sven N.; Valencia, Victor V.; Cituño, José; Oliveros, Verónica; De Girolamo Del Mauro, Lizet; Ramos, Víctor A. (2018). "The Late Oligocene–Early Miocene Marine Transgression of Patagonia". In Folguera, A.; Contreras Reyes, E.; Heredia, N.; et al. (eds.). The Evolution of the Chilean-Argentinean Andes. Springer. pp. 443–474. ISBN 978-3-319-67774-3.
  • Woodburne, M.O. 2010. The Great American Biotic Interchange: Dispersals, Tectonics, Climate, Sea Level and Holding Pens. Journal of Mammalian Evolution 17. 245–264. doi:10.1007/s10914-010-9144-8 PMID 21125025 PMC 2987556
  • Webb, S. David. 2006. The Great American Biotic Interchange: Patterns and Processes. Annals of the Missouri Botanical Garden 93. 245–257. doi:10.3417/0026-6493(2006)93[245:TGABIP]2.0.CO;2
Retrieved from ""