ABCG2

From Wikipedia, the free encyclopedia
ABCG2
Identifiers
AliasesABCG2, ATP-binding cassette, sub-family G (WHITE), member 2 (Junior blood group), ABC15, ABCP, BCRP, BCRP1, BMDP, CD338, CDw338, EST157481, GOUT1, MRX, MXR, MXR1, UAQTL1, MXR-1, ATP binding cassette subfamily G member 2 (Junior blood group)
External IDsOMIM: 603756 MGI: 1347061 HomoloGene: 55852 GeneCards: ABCG2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_011920
NM_001355477
NM_001381925
NM_001381926
NM_001381927

RefSeq (protein)

NP_036050
NP_001342406
NP_001368854
NP_001368855
NP_001368856

Location (UCSC)Chr 4: 88.09 – 88.23 MbChr 6: 58.58 – 58.7 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

ATP-binding cassette super-family G member 2 is a protein that in humans is encoded by the ABCG2 gene.[5][6] ABCG2 has also been designated as CDw338 (cluster of differentiation w338).

Function[]

The membrane-associated protein encoded by this gene is included in the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the White subfamily. Alternatively referred to as the breast cancer resistance protein (BCRP), this protein functions as a xenobiotic transporter which may play a role in multi-drug resistance to chemotherapeutic agents including mitoxantrone and camptothecin analogues. Early observations of significant ABCG2-mediated resistance to anthracyclines were subsequently attributed mutations encountered in vitro but not in nature or the clinic. Significant expression of this protein has been observed in the placenta,[7] and it has been shown to have a role in protecting the fetus from xenobiotics in the maternal circulation.[8]

The transporter has been shown to play protective roles in blocking absorption at the apical membrane of the intestine, and at the blood-testis barrier,[8] the blood–brain barrier,[8] and the membranes of hematopoietic progenitor and other stem cells. At the apical membranes of the liver and kidney, it enhances excretion of xenobiotics. In the lactating mammary gland, it has a role on excreting vitamins such as riboflavin and biotin into milk.[8] In the kidney and gastrointestinal tract, it has a role in urate excretion.

The protein also carries the Jr(a) antigen, which defines the Junior blood group system.[9]

Interactive pathway map[]

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]
[[File:
FluoropyrimidineActivity_WP1601go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
FluoropyrimidineActivity_WP1601go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Fluorouracil (5-FU) Activity edit]]
Fluorouracil (5-FU) Activity edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "FluoropyrimidineActivity_WP1601".
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
[[File:
IrinotecanPathway_WP46359go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
IrinotecanPathway_WP46359go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Irinotecan Pathway edit]]
Irinotecan Pathway edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "IrinotecanPathway_WP46359".

Inhibition[]

It is inhibited by some calcium channel blockers such as amlodipine, felodipine and nifedipine.[10]

See also[]

  • ATP-binding cassette transporter

References[]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000118777 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000029802 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Allikmets R, Gerrard B, Hutchinson A, Dean M (Feb 1997). "Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database". Hum Mol Genet. 5 (10): 1649–55. doi:10.1093/hmg/5.10.1649. PMID 8894702.
  6. ^ Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (Jan 1999). "A multidrug resistance transporter from human MCF-7 breast cancer cells". Proc Natl Acad Sci U S A. 95 (26): 15665–70. doi:10.1073/pnas.95.26.15665. PMC 28101. PMID 9861027.
  7. ^ "Entrez Gene: ABCG2 ATP-binding cassette, sub-family G (WHITE), member 2".
  8. ^ a b c d Vlaming ML, Lagas JS, Schinkel AH (January 2009). "Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice". Adv. Drug Deliv. Rev. 61 (1): 14–25. doi:10.1016/j.addr.2008.08.007. PMID 19118589.
  9. ^ Kniffin CL (2013). "OMIM entry # 614490 – BLOOD GROUP, JUNIOR SYSTEM; JR". Online Mendelian Inheritance in Man. Retrieved 1 September 2019.
  10. ^ Ghosh, Supradip; Sircar, Mrinal (2008). "Calcium channel blocker overdose: Experience with amlodipine". Indian Journal of Critical Care Medicine. Jaypee Brothers Medical Publishing. 12 (4): 190–3. doi:10.4103/0972-5229.45080. ISSN 0972-5229. PMC 2738322. PMID 19742263.

Further reading[]

External links[]

  • ABCG2+protein,+human at the US National Library of Medicine Medical Subject Headings (MeSH)
  • Human ABCG2 genome location and ABCG2 gene details page in the UCSC Genome Browser.
  • Overview of all the structural information available in the PDB for UniProt: Q9UNQ0 (Broad substrate specificity ATP-binding cassette transporter ABCG2) at the PDBe-KB.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Retrieved from ""