Octahedron

From Wikipedia, the free encyclopedia
  (Redirected from )

Regular octahedron
Octahedron.jpg
(Click here for rotating model)
Type Platonic solid
shortcode 4<> 3z
Elements F = 8, E = 12
V = 6 (χ = 2)
Faces by sides 8{3}
Conway notation O
aT
Schläfli symbols {3,4}
r{3,3} or
Face configuration V4.4.4
Wythoff symbol 4 | 2 3
Coxeter diagram CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Symmetry Oh, BC3, [4,3], (*432)
Rotation group O, [4,3]+, (432)
References U05, C17, W2
Properties regular, convexdeltahedron
Dihedral angle 109.47122° = arccos(−13)
Octahedron vertfig.png
3.3.3.3
(Vertex figure)
Hexahedron.png
Cube
(dual polyhedron)
Octahedron flat.svg
Net
3D model of regular octahedron.

In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces, twelve edges, and six vertices. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

A regular octahedron is the dual polyhedron of a cube. It is a rectified tetrahedron. It is a square bipyramid in any of three orthogonal orientations. It is also a triangular antiprism in any of four orientations.

An octahedron is the three-dimensional case of the more general concept of a cross polytope.

A regular octahedron is a 3-ball in the Manhattan (1) metric.

Regular octahedron[]

Dimensions[]

If the edge length of a regular octahedron is a, the radius of a circumscribed sphere (one that touches the octahedron at all vertices) is

and the radius of an inscribed sphere (tangent to each of the octahedron's faces) is

while the midradius, which touches the middle of each edge, is

Orthogonal projections[]

The octahedron has four special orthogonal projections, centered, on an edge, vertex, face, and normal to a face. The second and third correspond to the B2 and A2 Coxeter planes.

Orthogonal projections
Centered by Edge Face
Normal
Vertex Face
Image Cube t2 e.png Cube t2 fb.png 3-cube t2 B2.svg 3-cube t2.svg
Projective
symmetry
[2] [2] [4] [6]

Spherical tiling[]

The octahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

Uniform tiling 432-t2.png Octahedron stereographic projection.svg
Orthographic projection Stereographic projection

Cartesian coordinates[]

An octahedron with edge length 2 can be placed with its center at the origin and its vertices on the coordinate axes; the Cartesian coordinates of the vertices are then

( ±1, 0, 0 );
( 0, ±1, 0 );
( 0, 0, ±1 ).

In an xyz Cartesian coordinate system, the octahedron with center coordinates (a, b, c) and radius r is the set of all points (x, y, z) such that

Area and volume[]

The surface area A and the volume V of a regular octahedron of edge length a are:

Thus the volume is four times that of a regular tetrahedron with the same edge length, while the surface area is twice (because we have 8 rather than 4 triangles).

If an octahedron has been stretched so that it obeys the equation

the formulas for the surface area and volume expand to become

Additionally the inertia tensor of the stretched octahedron is

These reduce to the equations for the regular octahedron when

Geometric relations[]

The octahedron represents the central intersection of two tetrahedra

The interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, a regular octahedron is the result of cutting off from a regular tetrahedron, four regular tetrahedra of half the linear size (i.e. rectifying the tetrahedron). The vertices of the octahedron lie at the midpoints of the edges of the tetrahedron, and in this sense it relates to the tetrahedron in the same way that the cuboctahedron and icosidodecahedron relate to the other Platonic solids. One can also divide the edges of an octahedron in the ratio of the golden mean to define the vertices of an icosahedron. This is done by first placing vectors along the octahedron's edges such that each face is bounded by a cycle, then similarly partitioning each edge into the golden mean along the direction of its vector. There are five octahedra that define any given icosahedron in this fashion, and together they define a regular compound.

Octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, and is one of the 28 convex uniform honeycombs. Another is a tessellation of octahedra and cuboctahedra.

The octahedron is unique among the Platonic solids in having an even number of faces meeting at each vertex. Consequently, it is the only member of that group to possess mirror planes that do not pass through any of the faces.

Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid. Truncation of two opposite vertices results in a square bifrustum.

The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices. It is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size. The other three polyhedra with this property are the pentagonal dipyramid, the snub disphenoid, and an irregular polyhedron with 12 vertices and 20 triangular faces.[1]

The octahedron can also be generated as the case of a 3D superellipsoid with all values set to 1.

Uniform colorings and symmetry[]

There are 3 uniform colorings of the octahedron, named by the triangular face colors going around each vertex: 1212, 1112, 1111.

The octahedron's symmetry group is Oh, of order 48, the three dimensional hyperoctahedral group. This group's subgroups include D3d (order 12), the symmetry group of a triangular antiprism; D4h (order 16), the symmetry group of a square bipyramid; and Td (order 24), the symmetry group of a rectified tetrahedron. These symmetries can be emphasized by different colorings of the faces.

Name Octahedron Rectified tetrahedron
(Tetratetrahedron)
Triangular antiprism Square bipyramid Rhombic fusil
Image
(Face coloring)
Uniform polyhedron-43-t2.png
(1111)
Uniform polyhedron-33-t1.png
(1212)
Trigonal antiprism.png
(1112)
Square bipyramid.png
(1111)
Rhombic bipyramid.png
(1111)
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = CDel node 1.pngCDel split1.pngCDel nodes.png CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node f1.png
Schläfli symbol {3,4} r{3,3} s{2,6}
sr{2,3}
ft{2,4}
{ } + {4}
ftr{2,2}
{ } + { } + { }
Wythoff symbol 4 | 3 2 2 | 4 3 2 | 6 2
| 2 3 2
Symmetry Oh, [4,3], (*432) Td, [3,3], (*332) D3d, [2+,6], (2*3)
D3, [2,3]+, (322)
D4h, [2,4], (*422) D2h, [2,2], (*222)
Order 48 24 12
6
16 8

Nets[]

The regular octahedron has eleven arrangements of nets.

Dual[]

The octahedron is the dual polyhedron to the cube.

Dual Cube-Octahedron.svg

If the length of an edge of the octahedron , then the length of an edge of the dual cube .

Faceting[]

The uniform tetrahemihexahedron is a tetrahedral symmetry faceting of the regular octahedron, sharing edge and vertex arrangement. It has four of the triangular faces, and 3 central squares.

Uniform polyhedron-33-t1.png
Octahedron
Tetrahemihexahedron.png
Tetrahemihexahedron

Irregular octahedra[]

The following polyhedra are combinatorially equivalent to the regular polyhedron. They all have six vertices, eight triangular faces, and twelve edges that correspond one-for-one with the features of a regular octahedron.

  • Triangular antiprisms: Two faces are equilateral, lie on parallel planes, and have a common axis of symmetry. The other six triangles are isosceles.
  • Tetragonal bipyramids, in which at least one of the equatorial quadrilaterals lies on a plane. The regular octahedron is a special case in which all three quadrilaterals are planar squares.
  • Schönhardt polyhedron, a non-convex polyhedron that cannot be partitioned into tetrahedra without introducing new vertices.
  • Bricard octahedron, a non-convex self-crossing flexible polyhedron

Other convex octahedra[]

More generally, an octahedron can be any polyhedron with eight faces. The regular octahedron has 6 vertices and 12 edges, the minimum for an octahedron; irregular octahedra may have as many as 12 vertices and 18 edges.[2] There are 257 topologically distinct convex octahedra, excluding mirror images. More specifically there are 2, 11, 42, 74, 76, 38, 14 for octahedra with 6 to 12 vertices respectively.[3][4] (Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)

Some better known irregular octahedra include the following:

  • Hexagonal prism: Two faces are parallel regular hexagons; six squares link corresponding pairs of hexagon edges.
  • Heptagonal pyramid: One face is a heptagon (usually regular), and the remaining seven faces are triangles (usually isosceles). It is not possible for all triangular faces to be equilateral.
  • Truncated tetrahedron: The four faces from the tetrahedron are truncated to become regular hexagons, and there are four more equilateral triangle faces where each tetrahedron vertex was truncated.
  • Tetragonal trapezohedron: The eight faces are congruent kites.
  • Octagonal hosohedron: degenerate in Euclidean space, but can be realized spherically.

Octahedra in the physical world[]

Octahedra in nature[]

Fluorite octahedron.
  • Natural crystals of diamond, alum or fluorite are commonly octahedral, as the space-filling tetrahedral-octahedral honeycomb.
  • The plates of kamacite alloy in octahedrite meteorites are arranged paralleling the eight faces of an octahedron.
  • Many metal ions coordinate six ligands in an octahedral or distorted octahedral configuration.
  • Widmanstätten patterns in nickel-iron crystals

Octahedra in art and culture[]

Two identically formed rubik's snakes can approximate an octahedron.
  • Especially in roleplaying games, this solid is known as a "d8", one of the more common polyhedral dice.
  • If each edge of an octahedron is replaced by a one-ohm resistor, the resistance between opposite vertices is 1/2 ohm, and that between adjacent vertices 5/12 ohm.[5]
  • Six musical notes can be arranged on the vertices of an octahedron in such a way that each edge represents a consonant dyad and each face represents a consonant triad; see hexany.

Tetrahedral Truss[]

A framework of repeating tetrahedrons and octahedrons was invented by Buckminster Fuller in the 1950s, known as a space frame, commonly regarded as the strongest structure for resisting cantilever stresses.

Related polyhedra[]

A regular octahedron can be augmented into a tetrahedron by adding 4 tetrahedra on alternated faces. Adding tetrahedra to all 8 faces creates the stellated octahedron.

Triangulated tetrahedron.png Compound of two tetrahedra.png
tetrahedron stellated octahedron

The octahedron is one of a family of uniform polyhedra related to the cube.

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg

It is also one of the simplest examples of a hypersimplex, a polytope formed by certain intersections of a hypercube with a hyperplane.

The octahedron is topologically related as a part of sequence of regular polyhedra with Schläfli symbols {3,n}, continuing into the hyperbolic plane.

*n32 symmetry mutation of regular tilings: {3,n}
Spherical Euclid. Compact hyper. Paraco. Noncompact hyperbolic
Trigonal dihedron.svg Uniform tiling 332-t2.png Uniform tiling 432-t2.png Uniform tiling 532-t2.png Uniform polyhedron-63-t2.png Order-7 triangular tiling.svg H2-8-3-primal.svg H2 tiling 23i-4.png H2 tiling 23j12-4.png H2 tiling 23j9-4.png H2 tiling 23j6-4.png H2 tiling 23j3-4.png
3.3 33 34 35 36 37 38 3 312i 39i 36i 33i

Tetratetrahedron[]

The regular octahedron can also be considered a rectified tetrahedron – and can be called a tetratetrahedron. This can be shown by a 2-color face model. With this coloring, the octahedron has tetrahedral symmetry.

Compare this truncation sequence between a tetrahedron and its dual:

Family of uniform tetrahedral polyhedra
Symmetry: [3,3], (*332) [3,3]+, (332)
Uniform polyhedron-33-t0.png Uniform polyhedron-33-t01.png Uniform polyhedron-33-t1.png Uniform polyhedron-33-t12.png Uniform polyhedron-33-t2.png Uniform polyhedron-33-t02.png Uniform polyhedron-33-t012.png Uniform polyhedron-33-s012.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
{3,3} t{3,3} r{3,3} t{3,3} {3,3} rr{3,3} tr{3,3} sr{3,3}
Duals to uniform polyhedra
Tetrahedron.svg Triakistetrahedron.jpg Hexahedron.svg Triakistetrahedron.jpg Tetrahedron.svg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Dodecahedron.svg
V3.3.3 V3.6.6 V3.3.3.3 V3.6.6 V3.3.3 V3.4.3.4 V4.6.6 V3.3.3.3.3

The above shapes may also be realized as slices orthogonal to the long diagonal of a tesseract. If this diagonal is oriented vertically with a height of 1, then the first five slices above occur at heights r, 3/8, 1/2, 5/8, and s, where r is any number in the range 0 < r1/4, and s is any number in the range 3/4s < 1.

The octahedron as a tetratetrahedron exists in a sequence of symmetries of quasiregular polyhedra and tilings with vertex configurations (3.n)2, progressing from tilings of the sphere to the Euclidean plane and into the hyperbolic plane. With orbifold notation symmetry of *n32 all of these tilings are Wythoff constructions within a fundamental domain of symmetry, with generator points at the right angle corner of the domain.[6][7]

*n32 orbifold symmetries of quasiregular tilings: (3.n)2
Quasiregular fundamental domain.png
Construction
Spherical Euclidean Hyperbolic
*332 *432 *532 *632 *732 *832... *∞32
Quasiregular
figures
Uniform tiling 332-t1-1-.png Uniform tiling 432-t1.png Uniform tiling 532-t1.png Uniform tiling 63-t1.svg Triheptagonal tiling.svg H2-8-3-rectified.svg H2 tiling 23i-2.png
Vertex (3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.∞)2

Trigonal antiprism[]

As a trigonal antiprism, the octahedron is related to the hexagonal dihedral symmetry family.

Uniform hexagonal dihedral spherical polyhedra
Symmetry: [6,2], (*622) [6,2]+, (622) [6,2+], (2*3)
Hexagonal dihedron.png Dodecagonal dihedron.png Hexagonal dihedron.png Spherical hexagonal prism.png Spherical hexagonal hosohedron.png Spherical truncated trigonal prism.png Spherical dodecagonal prism2.png Spherical hexagonal antiprism.png Spherical trigonal antiprism.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{6,2} tr{6,2} sr{6,2} s{2,6}
Duals to uniforms
Spherical hexagonal hosohedron.png Spherical dodecagonal hosohedron.png Spherical hexagonal hosohedron.png Spherical hexagonal bipyramid.png Hexagonal dihedron.png Spherical hexagonal bipyramid.png Spherical dodecagonal bipyramid.png Spherical hexagonal trapezohedron.png Spherical trigonal trapezohedron.png
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V3.3.3.3
Family of uniform n-gonal antiprisms
Antiprism name Digonal antiprism (Trigonal)
Triangular antiprism
(Tetragonal)
Square antiprism
Pentagonal antiprism Hexagonal antiprism Heptagonal antiprism Octagonal antiprism Enneagonal antiprism Decagonal antiprism Hendecagonal antiprism Dodecagonal antiprism ... Apeirogonal antiprism
Polyhedron image Digonal antiprism.png Trigonal antiprism.png Square antiprism.png Pentagonal antiprism.png Hexagonal antiprism.png Antiprism 7.png Octagonal antiprism.png Enneagonal antiprism.png Decagonal antiprism.png Hendecagonal antiprism.png Dodecagonal antiprism.png ...
Spherical tiling image Spherical digonal antiprism.png Spherical trigonal antiprism.png Spherical square antiprism.png Spherical pentagonal antiprism.png Spherical hexagonal antiprism.png Spherical heptagonal antiprism.png Spherical octagonal antiprism.png Plane tiling image Infinite antiprism.svg
Vertex config. 2.3.3.3 3.3.3.3 4.3.3.3 5.3.3.3 6.3.3.3 7.3.3.3 8.3.3.3 9.3.3.3 10.3.3.3 11.3.3.3 12.3.3.3 ... ∞.3.3.3

Square bipyramid[]

"Regular" right (symmetric) n-gonal bipyramids:
Bipyramid name Digonal bipyramid Triangular bipyramid
(See: J12)
Square bipyramid
(See: O)
Pentagonal bipyramid
(See: J13)
Hexagonal bipyramid Heptagonal bipyramid Octagonal bipyramid Enneagonal bipyramid Decagonal bipyramid ... Apeirogonal bipyramid
Polyhedron image Triangular bipyramid.png Square bipyramid.png Pentagonale bipiramide.png Hexagonale bipiramide.png Heptagonal bipyramid.png Octagonal bipyramid.png Enneagonal bipyramid.png Decagonal bipyramid.png ...
Spherical tiling image Spherical digonal bipyramid.svg Spherical trigonal bipyramid.png Spherical square bipyramid.svg Spherical pentagonal bipyramid.png Spherical hexagonal bipyramid.png Spherical heptagonal bipyramid.png Spherical octagonal bipyramid.png Spherical enneagonal bipyramid.png Spherical decagonal bipyramid.png Plane tiling image Infinite bipyramid.svg
Face config. V2.4.4 V3.4.4 V4.4.4 V5.4.4 V6.4.4 V7.4.4 V8.4.4 V9.4.4 V10.4.4 ... V∞.4.4
Coxeter diagram CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 8.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 9.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 10.pngCDel node.png ... CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel infin.pngCDel node.png

See also[]

  • Octahedral number
  • Centered octahedral number
  • Spinning octahedron
  • Stella octangula
  • Triakis octahedron
  • Hexakis octahedron
  • Truncated octahedron
  • Octahedral molecular geometry
  • Octahedral symmetry
  • Octahedral graph
  • Octahedral sphere

References[]

  1. ^ Finbow, Arthur S.; Hartnell, Bert L.; Nowakowski, Richard J.; Plummer, Michael D. (2010). "On well-covered triangulations. III". Discrete Applied Mathematics. 158 (8): 894–912. doi:10.1016/j.dam.2009.08.002. MR 2602814.
  2. ^ "Archived copy". Archived from the original on 10 October 2011. Retrieved 2 May 2006.CS1 maint: archived copy as title (link)
  3. ^ Counting polyhedra
  4. ^ "Archived copy". Archived from the original on 17 November 2014. Retrieved 14 August 2016.CS1 maint: archived copy as title (link)
  5. ^ Klein, Douglas J. (2002). "Resistance-Distance Sum Rules" (PDF). Croatica Chemica Acta. 75 (2): 633–649. Archived from the original (PDF) on 10 June 2007. Retrieved 30 September 2006.
  6. ^ Coxeter Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter V: The Kaleidoscope, Section: 5.7 Wythoff's construction)
  7. ^ Two Dimensional symmetry Mutations by Daniel Huson

External links[]

hide
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Retrieved from ""