Order-8 pentagonal tiling
Order-8 pentagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 58 |
Schläfli symbol | {5,8} |
Wythoff symbol | 8 h 5 2 |
Coxeter diagram | |
Symmetry group | [8,5], (*852) |
Dual | |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the order-8 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,8}.
See also[]
Wikimedia Commons has media related to Order-8 pentagonal tiling. |
- Uniform tilings in hyperbolic plane
- List of regular polytopes
References[]
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links[]
Categories:
- Hyperbolic tilings
- Isogonal tilings
- Isohedral tilings
- Order-8 tilings
- Pentagonal tilings
- Regular tilings