Diclazepam

From Wikipedia, the free encyclopedia
Diclazepam
Diclazepam structure.svg
Diclazepam molecule ball.png
Clinical data
Routes of
administration
Oral, sublingual
Legal status
Legal status
  • CA: Schedule IV
  • DE: Anlage II (Authorized trade only, not prescriptible)
  • UK: Class C
Pharmacokinetic data
Bioavailability?
MetabolismHepatic
Elimination half-life~42 hours[1]
ExcretionRenal
Identifiers
IUPAC name
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC16H12Cl2N2O
Molar mass319.19 g·mol−1
3D model (JSmol)
SMILES
InChI
 ☒NcheckY (what is this?)  

Diclazepam (Ro5-3448), also known as chlorodiazepam and 2'-chloro-diazepam, is a benzodiazepine and functional analog of diazepam. It was first synthesized by Leo Sternbach and his team at Hoffman-La Roche in 1960.[2] It is not currently approved for use as a medication, but rather sold as an unscheduled substance.[3][4][5] Efficacy and safety have not been tested in humans.

In animal models, its effects are similar to diazepam, possessing long-acting anxiolytic, anticonvulsant, hypnotic, sedative, skeletal muscle relaxant, and amnestic properties.[citation needed]

Metabolism[]

Metabolism of this compound has been assessed,[1] revealing diclazepam has an approximate elimination half-life of 42 hours and undergoes N-demethylation to delorazepam, which can be detected in urine for 6 days following administration of the parent compound.[6] Other metabolites detected were lorazepam and lormetazepam which were detectable in urine for 19 and 11 days, respectively, indicating hydroxylation by cytochrome P450 enzymes occurring concurrently with N-demethylation.

Legal status[]

United Kingdom[]

In the UK, diclazepam has been classified as a Class C drug by the May 2017 amendment to The Misuse of Drugs Act 1971 along with several other benzodiazepine drugs.[7]

See also[]

  • Diazepam
  • Difludiazepam
  • Delorazepam (Nordiclazepam)
  • Lorazepam
  • Phenazepam
  • Ro09-9212
  • Ro5-4864 (4'-Chlorodiazepam)

References[]

  1. ^ Jump up to: a b Moosmann B, Bisel P, Auwärter V (July–August 2014). "Characterization of the designer benzodiazepine diclazepam and preliminary data on its metabolism and pharmacokinetics". Drug Testing and Analysis. 6 (7–8): 757–63. doi:10.1002/dta.1628. PMID 24604775.
  2. ^ US 3136815, "Amino substituted benzophenone oximes and derivatives thereof" 
  3. ^ Madeleine Pettersson Bergstrand; Anders Helander; Therese Hansson; Olof Beck (2016). "Detectability of designer benzodiazepines in CEDIA, EMIT II Plus, HEIA, and KIMS II immunochemical screening assays". Drug Testing and Analysis. 9 (4): 640–645. doi:10.1002/dta.2003. PMID 27366870.
  4. ^ Høiseth, Gudrun; Tuv, Silja Skogstad; Karinen, Ritva (2016). "Blood concentrations of new designer benzodiazepines in forensic cases". Forensic Science International. 268: 35–38. doi:10.1016/j.forsciint.2016.09.006. PMID 27685473.
  5. ^ Manchester, Kieran R.; Maskell, Peter D.; Waters, Laura (2018). "Experimental versus theoretical log D7.4, pKa and plasma protein binding values for benzodiazepines appearing as new psychoactive substances". Drug Testing and Analysis. 10 (8): 1258–1269. doi:10.1002/dta.2387. ISSN 1942-7611. PMID 29582576.
  6. ^ Bareggi SR, Truci G, Leva S, Zecca L, Pirola R, Smirne S (1988). "Pharmacokinetics and bioavailability of intravenous and oral chlordesmethyldiazepam in humans". European Journal of Clinical Pharmacology. 34 (1): 109–112. doi:10.1007/bf01061430. PMID 2896126. S2CID 1574555.
  7. ^ "The Misuse of Drugs Act 1971 (Amendment) Order 2017".
Retrieved from ""