KCNK4

From Wikipedia, the free encyclopedia
KCNK4
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesKCNK4, K2p4.1, TRAAK, TRAAK1, potassium two pore domain channel subfamily K member 4, FHEIG
External IDsOMIM: 605720 MGI: 1298234 HomoloGene: 7391 GeneCards: KCNK4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_016611
NM_033310
NM_001317090

NM_008431

RefSeq (protein)

NP_001304019
NP_201567

NP_032457

Location (UCSC)Chr 11: 64.29 – 64.3 MbChr 19: 6.92 – 6.93 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Potassium channel subfamily K member 4 is a protein that in humans is encoded by the KCNK4 gene.[5][6][7] KCNK4 protein channels are also called TRAAK channels.

Function[]

Potassium channels play a role in many cellular processes including the maintenance of the action potential, muscle contraction, hormone secretion, osmotic regulation, and ion flow. This gene encodes the K2P4.1 protein, a lipid-gated ion channel that belongs to the superfamily of potassium channel proteins containing two pore-forming P domains. K2P4.1 homodimerizes and functions as an outwardly rectifying channel. It is expressed primarily in neural tissues and is stimulated by membrane stretch and polyunsaturated fatty acids.[7]

TRAAK channels are found in mammalian neurons and are part of a protein family of weakly inward rectifying potassium channels. This subfamily of potassium channels is mechanically gated. The C-terminal of TRAAK has a charged cluster that is important in maintaining the mechanosensitive properties of the channel.[8]

TRAAK is only expressed in neuronal tissue, and can be found in the brain, spinal cord, and retina, which suggests that it has a function beyond mechanotransduction in terms of neuronal excitability.[9] The highest levels of TRAAK expression are in the olfactory system, cerebral cortex, hippocampal formation, habenula, basal ganglia, and cerebellum.[9] TRAAK channels are mechanically activated when there is a convex curvature in the membrane that alters the channel’s activity. TRAAK channels are thought to have a role in axonal pathfinding, growth cone motility, and neurite elongation, as well as possibly having a role in touch or pain detection.[10][11]

See also[]

  • Tandem pore domain potassium channel

References[]

Scrmfclh åznxjzodus

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000182450 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024957 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Lesage F, Maingret F, Lazdunski M (May 2000). "Cloning and expression of human TRAAK, a polyunsaturated fatty acids-activated and mechano-sensitive K(+) channel". FEBS Lett. 471 (2–3): 137–40. doi:10.1016/S0014-5793(00)01388-0. PMID 10767409. S2CID 31793244.
  6. ^ Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (Dec 2005). "International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels". Pharmacol Rev. 57 (4): 527–40. doi:10.1124/pr.57.4.12. PMID 16382106. S2CID 7356601.
  7. ^ a b "Entrez Gene: KCNK4 potassium channel, subfamily K, member 4".
  8. ^ Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M (1999). "Inhalational anesthetics activate two-pore-domain background K+ channels". Nature Neuroscience. 2 (5): 422–426. doi:10.1038/8084. PMID 10321245. S2CID 23092576.
  9. ^ a b Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998). "A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids". The EMBO Journal. 17 (12): 3297–3308. doi:10.1093/emboj/17.12.3297. PMC 1170668. PMID 9628867.
  10. ^ Vandorpe DH, Morris CE (1992). "Stretch activation of the Aplysia S-channel". The Journal of Membrane Biology. 127 (3): 205–214. doi:10.1007/bf00231508. PMID 1495087. S2CID 29622155.
  11. ^ Maingret F, Fosset M, Lesage F, Lazdunski M, Honoré E (1999). "TRAAK is a mammalian neuronal mechano-gated K+ channel". The Journal of Biological Chemistry. 274 (3): 1381–1387. doi:10.1074/jbc.274.3.1381. PMID 9880510.

Further reading[]

External links[]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Retrieved from ""