Santa Teresa Formation, Colombia

From Wikipedia, the free encyclopedia
Santa Teresa Formation
Stratigraphic range: Late Oligocene (Deseadan)
~25–23 Ma
TypeGeological formation
Underliesalluvium
Overlies
ThicknessType section: 118 m (387 ft)
Maximum: 150 m (490 ft)
Lithology
PrimaryClaystone
OtherSiltstone, calcareous sandstone
Location
Coordinates4°50′55″N 74°37′14″W / 4.84861°N 74.62056°W / 4.84861; -74.62056Coordinates: 4°50′55″N 74°37′14″W / 4.84861°N 74.62056°W / 4.84861; -74.62056
Country Colombia
ExtentWestern Eastern Ranges, Andes
Southern Middle Magdalena Valley
Type section
Named forVereda Santa Teresa
Named by
LocationSan Juan de Rioseco
Year defined1966
Coordinates4°50′55″N 74°37′14″W / 4.84861°N 74.62056°W / 4.84861; -74.62056
RegionCundinamarca
Country Colombia
Thickness at type section118 m (387 ft)
Blakey 035Ma - COL.jpg
Paleogeography of Northern South America
35 Ma, by Ron Blakey

The Santa Teresa Formation (Spanish: Formación Santa Teresa, Tist, Pgst) is a geological formation of the western Eastern Ranges of the Colombian Andes, west of the , and the southern Middle Magdalena Valley. The formation spreads across the western part of Cundinamarca and the northern portion of Tolima. The formation consists of grey claystones intercalated by orange quartz siltstones and sandstones of small to conglomeratic grain size. The thickness at its type section has been measured to be 118 metres (387 ft) and a maximum thickness of 150 metres (490 ft) suggested.

In the formation, dated on the basis of its fossil content to the Late Oligocene, many leaf imprints and mollusks were found, suggesting a lacustrine to deltaic depositional environment with periodical marine incursions.

Etymology[]

The formation was defined by in 1966 and named after the vereda Santa Teresa, San Juan de Rioseco.[1]

Description[]

Santa Teresa Formation, Colombia is located in Cundinamarca Department
Santa Teresa Formation, Colombia
Type locality of the Santa Teresa Formation in Cundinamarca

The Santa Teresa Formation is the youngest unit outcropping in the Jerusalén-Guaduas synclinal, western Eastern Ranges, covering the . The formation was formerly called La Cira Formation. In the Balú quebrada, the formation shows a thickness of 118 metres (387 ft), while the maximum thickness could reach 150 metres (490 ft).[1]

The lower boundary of the formation is marked by the first occurrence of grey claystones, covering the light brown claystones of the San Juan de Río Seco Formation. The formation comprises grey claystones intercalated by orange quartz siltstones and sandstones of small to conglomeratic grain size. The roundness of the sandstone grains has been characterized as angular to subangular by Lamus Ochoa et al. in 2013.[2] The claystones occur in thick layers with wavy lamination.[1]

In these thick packages of claystones, the formation has provided fossil leaves in various forms and sizes, and to a lesser extent the remains of mollusks; gastropods and bivalves. The basal contacts of these beds are straight to transitional and most of the time are towards quartz arenites where the gastropods dominate. These facies sequences have a thickness of about 2 metres (6.6 ft). Locally, bioturbation, siderite nodules and coal beds occur in the formation. The sandstones occur in very thin to very thick beds, characterized by , in lenses and very locally in . The cement of the arenites is calcareous.[1] The grain composition of the lithic fraction comprises zircon,[3] epidote, zoisite, clinozoisite and pyroxenes, which at the top of the formation amounts to 86 percent.[4]

Stratigraphy and depositional environment[]

The Santa Teresa Formation conformably overlies the and is covered by subrecent alluvium.[1] The formation is part of the sequence after the Eocene unconformity.[5]

The age has been inferred to be Late Oligocene. The depositional environment has been interpreted as lacustrine with marine influence in the form of channels. The abundance of brackish and fresh water gastropods suggests these environmental conditions prevailed in the Oligocene of central Colombia.[1]

In the type section at the Balú quebrada, facies traits that confirm this interpretation can be observed. The lacustrine areas were probably shallow water environments with reducing conditions and a continuous supply of siliciclastics by small deltas. The many leaf imprints and coal layers support the presence of a lush vegetation at the time of deposition.[1] The abundance of lithic clasts near the top of the formation supports a renewed provenance area to the east; the uplift of the Eastern Ranges of the Colombian Andes,[6] due to activity of the .[7]

Paleontology[]

The Santa Teresa Formation has provided fossil mollusks, described by De Porta and Solé De Porta in 1962 and De Porta Anodontites laciranus, Diplodon oponcintonis, Diplodon waringi,[8] and Corbula sp., among other mollusks described by De Porta in 1966.[1]

Regional correlations[]

Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events proximal Llanos distal Llanos Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
Blakey 000Ma - COL.jpg
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
Blakey Pleist - COL.jpg
Pleistocene volcanism
Andean orogeny 3
Glaciations
Soatá
Sabana

Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[9][10][11][12]
2.6 Pliocene
Blakey 020Ma - COL.jpg
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Honda [11][13]
13.5 Langhian Regional flooding hiatus Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [12][14]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [13][12]
17.3 Distal lacustrine-deltaic (C2) Seal
19 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
Blakey 035Ma - COL.jpg
Andean orogeny 1
Foredeep
Proximal fluvio-deltaic (C5) Reservoir [10][13]
25 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene Proximal deltaic-marine (C7) Reservoir [10][13][15]
32 Oligo-Eocene Usme onlap Marine-deltaic (C8) Seal
Source
[15]
35 Late Eocene
Blakey 050Ma - COL.jpg
Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [12][16]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
Blakey 065Ma - COL.jpg
Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[12][16]
55 Late Paleocene PETM
2000 ppm CO2
Bogotá
60 Early Paleocene SALMA Barco Guaduas Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [9][10][13][12][17]
65 Maastrichtian
Blakey 090Ma - COL.jpg
KT extinction Guadalupe Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [9][12]
72 Campanian End of rifting [12][18]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [9][12][19]
93 Cenomanian
Blakey 105Ma - COL.jpg
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [13][19]
113 Aptian
Blakey 120Ma - COL.jpg
Fómeque Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [10][12][20]
125 Barremian High biodiversity Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [9]
129 Hauterivian
Blakey 150Ma - COL.jpg
Rift 1 Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [9]
133 Valanginian
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [10][21]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Arcabuco
Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [13][22]
150 Early-Mid Jurassic
Blakey 170Ma - COL.jpg
Passive margin 2 La Quinta

Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[23]
201 Late Triassic
Blakey 200Ma - COL.jpg
[13]
235 Early Triassic
237 Ma orogenies reconstruction.jpg
Pangea hiatus "Paleozoic"
250 Permian
280 Ma plate tectonic reconstruction.png
300 Late Carboniferous
Laurasia 330Ma.jpg
Famatinian orogeny
()
[24]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)

()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
380 Ma plate tectonic reconstruction.png
Passive margin 1 Río Cachirí
(360-419)

()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[21][25][26][27][28]
390 Early Devonian
Gondwana 420 Ma.png
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian
425 Early Silurian hiatus
440 Late Ordovician
Middle Ordovician South Polar paleogeography - 460 Ma.png
Rich fauna in Bolivia
(450-490)

()
470 Early Ordovician First fossils
(>470±22)

()

()

()

Venado
(470-475)
[29][30][31]
488 Late Cambrian
ক্যাম্ব্রিয়ান৫০.png
Regional intrusions
(490-515)

()

()

(490-590)

()
[32][33]
515 Early Cambrian Cambrian explosion [31][34]
542 Ediacaran
Positions of ancient continents, 550 million years ago.jpg
Break-up of Rodinia pre-Quetame post-Parguaza
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [35][36]
600 Neoproterozoic
Rodinia reconstruction.jpg
Cariri Velhos orogeny
(600-1400)
pre-Guaviare [32]
800
Pannotia - 2.png
Snowball Earth [37]
1000 Mesoproterozoic
Paleoglobe NO 1260 mya.gif
Sunsás orogeny
(1000)

(1030-1100)
[38][39][40][41]
1300 pre-Ariarí
(1300-1400)

(1180-1550)
[42]
1400
Paleoglobe NO 1590 mya-vector-colors.svg
pre-Bucaramanga [43]
1600 Paleoproterozoic
(1500-1700)
pre-Garzón [44]
1800
2050ma.png

(1800)
[42][44]
1950 pre-Mitú [42]
2200 Columbia
2530 Archean
Kenorland.jpg
[42]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


See also[]

Notes and references[]

Notes[]

  1. ^ based on Duarte et al. (2019)[45], García González et al. (2009),[46] and geological report of Villavicencio[47]
  2. ^ based on Duarte et al. (2019)[45] and the hydrocarbon potential evaluation performed by the UIS and in 2009[48]

References[]

  1. ^ a b c d e f g h Acosta & Ulloa, 2001, p.64
  2. ^ Lamus Ochoa et al., 2013, p.29
  3. ^ Lamus Ochoa et al., 2013, p.34
  4. ^ Lamus Ochoa et al., 2013, p.32
  5. ^ Lamus Ochoa et al., 2013, p.22
  6. ^ Lamus Ochoa et al., 2013, p.35
  7. ^ Caballero et al., 2010, p.74
  8. ^ Acosta Garay et al., 2002, p.49
  9. ^ a b c d e f García González et al., 2009, p.27
  10. ^ a b c d e f García González et al., 2009, p.50
  11. ^ a b García González et al., 2009, p.85
  12. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  13. ^ a b c d e f g h Barrero et al., 2007, p.58
  14. ^ Plancha 111, 2001, p.29
  15. ^ a b Plancha 177, 2015, p.39
  16. ^ a b Plancha 111, 2001, p.26
  17. ^ Plancha 111, 2001, p.24
  18. ^ Plancha 111, 2001, p.23
  19. ^ a b Pulido & Gómez, 2001, p.32
  20. ^ Pulido & Gómez, 2001, p.30
  21. ^ a b Pulido & Gómez, 2001, pp.21-26
  22. ^ Pulido & Gómez, 2001, p.28
  23. ^ Correa Martínez et al., 2019, p.49
  24. ^ Plancha 303, 2002, p.27
  25. ^ Terraza et al., 2008, p.22
  26. ^ Plancha 229, 2015, pp.46-55
  27. ^ Plancha 303, 2002, p.26
  28. ^ Moreno Sánchez et al., 2009, p.53
  29. ^ Mantilla Figueroa et al., 2015, p.43
  30. ^ Manosalva Sánchez et al., 2017, p.84
  31. ^ a b Plancha 303, 2002, p.24
  32. ^ a b Mantilla Figueroa et al., 2015, p.42
  33. ^ Arango Mejía et al., 2012, p.25
  34. ^ Plancha 350, 2011, p.49
  35. ^ Pulido & Gómez, 2001, pp.17-21
  36. ^ Plancha 111, 2001, p.13
  37. ^ Plancha 303, 2002, p.23
  38. ^ Plancha 348, 2015, p.38
  39. ^ Planchas 367-414, 2003, p.35
  40. ^ Toro Toro et al., 2014, p.22
  41. ^ Plancha 303, 2002, p.21
  42. ^ a b c d Bonilla et al., 2016, p.19
  43. ^ Gómez Tapias et al., 2015, p.209
  44. ^ a b Bonilla et al., 2016, p.22
  45. ^ a b Duarte et al., 2019
  46. ^ García González et al., 2009
  47. ^ Pulido & Gómez, 2001
  48. ^ García González et al., 2009, p.60

Bibliography[]

See also sources for the correlation table

  • Acosta Garay, Jorge, and Carlos E. Ulloa Melo. 2001. Geología de la Plancha 227 La Mesa - 1:100,000, 1–80. INGEOMINAS.
  • Acosta Garay, Jorge Enrique; Rafael Guatame; Juan Carlos Caicedo A., and Jorge Ignacio Cárdenas. 2002. Geología de la Plancha 245 Girardot - 1:100,000, 1–101. INGEOMINAS.
  • Caballero, Víctor; Mauricio Parra, and Andrés Roberto Mora Bohórquez. 2010. Levantamiento de la Cordillera Oriental de Colombia durante el Eoceno tardío – Oligoceno temprano: Proveniencia sedimentaria en el Sinclinal de Nuevo Mundo, Cuenca Valle Medio del Magdalena, 45–77. 32; Boletín de Geología.
  • Lamus Ochoa, Felipe; Germán Bayona; Agustín Cardona, and Andrés Mora. 2013. Procedencia de las unidades cenozoicas del Sinclinal de Guaduas: implicación en la evolución tectónica del sur del Valle Medio del Magdalena y orógenos adyacentes, 1–42. 35; Boletín de Geología.

Maps[]

Retrieved from ""